Eukaryotes produce large numbers of small non-coding RNAs that act as specificity determinants for various gene-regulatory complexes. These include microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs). These RNAs can be discovered, annotated, and quantified using small RNA-seq, a variant RNA-seq method based on highly parallel sequencing. Alignment to a reference genome is a critical step in analysis of small RNA-seq data. Because of their small size (20-30 nts depending on the organism and sub-type) and tendency to originate from multi-gene families or repetitive regions, reads that align equally well to more than one genomic location are very common. Typical methods to deal with multi-mapped small RNA-seq reads sacrifice either precision or sensitivity. The tool ‘butter’ balances precision and sensitivity by placing multi-mapped reads using an iterative approach, where the decision between possible locations is dictated by the local densities of more confidently aligned reads. Butter displays superior performance relative to other small RNA-seq aligners. Treatment of multi-mapped small RNA-seq reads has substantial impacts on downstream analyses, including quantification of MIRNA paralogs, and discovery of endogenous siRNA loci. Butter is freely available under a GNU general public license.
SummaryPlant small RNAs regulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. sRNAs fall into two major categories: those that are reliant on RNA Dependent RNA Polymerases (RDRs) for biogenesis and those that aren't. Known RDR-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR-independent sRNAs are primarily microRNAs and other hairpinderived sRNAs. In this study, we produced and analyzed small RNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. Only a small fraction of all sRNA loci were RDR1/RDR2/RDR6-independent; most of these were microRNA loci or associated with 22, 2017; 2 predicted hairpin precursors. We found 58 previously annotated microRNA loci that were reliant on RDR1, -2, or -6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent small RNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for small RNA biogenesis. These 38 small RNA-producing loci have novel biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggest that these 38 loci represent one or more new types of small RNAs in Arabidopsis thaliana.International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/238691 doi: bioRxiv preprint first posted online Dec.Significance Statement: Small RNAs regulate gene expression in plants and are produced through a variety of previously-described mechanisms. Here, we examine a set of previously undiscovered small RNA-producing loci that are produced by novel mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.