Currently, face-swapping deepfake techniques are widely spread, generating a significant number of highly realistic fake videos that threaten the privacy of people and countries. Due to their devastating impacts on the world, distinguishing between real and deepfake videos has become a fundamental issue. This paper presents a new deepfake detection method: you only look once–convolutional neural network–extreme gradient boosting (YOLO-CNN-XGBoost). The YOLO face detector is employed to extract the face area from video frames, while the InceptionResNetV2 CNN is utilized to extract features from these faces. These features are fed into the XGBoost that works as a recognizer on the top level of the CNN network. The proposed method achieves 90.62% of an area under the receiver operating characteristic curve (AUC), 90.73% accuracy, 93.53% specificity, 85.39% sensitivity, 85.39% recall, 87.36% precision, and 86.36% F1-measure on the CelebDF-FaceForencics++ (c23) merged dataset. The experimental study confirms the superiority of the presented method as compared to the state-of-the-art methods.
Recently, the deepfake techniques for swapping faces have been spreading, allowing easy creation of hyper-realistic fake videos. Detecting the authenticity of a video has become increasingly critical because of the potential negative impact on the world. Here, a new project is introduced; You Only Look Once Convolution Recurrent Neural Networks (YOLO-CRNNs), to detect deepfake videos. The YOLO-Face detector detects face regions from each frame in the video, whereas a fine-tuned EfficientNet-B5 is used to extract the spatial features of these faces. These features are fed as a batch of input sequences into a Bidirectional Long Short-Term Memory (Bi-LSTM), to extract the temporal features. The new scheme is then evaluated on a new large-scale dataset; CelebDF-FaceForencics++ (c23), based on a combination of two popular datasets; FaceForencies++ (c23) and Celeb-DF. It achieves an Area Under the Receiver Operating Characteristic Curve (AUROC) 89.35% score, 89.38% accuracy, 83.15% recall, 85.55% precision, and 84.33% F1-measure for pasting data approach. The experimental analysis approves the superiority of the proposed method compared to the state-of-the-art methods.
This paper studies the effects of the time change on the frequencies of specific terms connected to the document field in a given period. These specific terms are the field association (FA) terms. The paper also suggests a new method for automatic evaluation of the stabilization classes of FA terms to improve the precision of decision tree. The stabilization classes point out the popularity of list of FA terms depending on time change. Moreover, the suggested method manipulates the problem of the scattering of data numbers among classes to improve the performance of decision tree precision. The presented method is evaluated through conducting experiments by simulating the result of 1245 files, which are equivalent to 4.15 MB. The F-measure for increment, fairly steady, and decrement classes achieves %90.4, %99.3, and %38.6, sequentially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.