An apparent increased interest has been recently devoted towards the previously untrodden path for anionic point defect engineering of electrocatalytic surfaces. The role of vacancy engineering in improving photo‐ and electrocatalytic activities of transition metal oxides (TMOs) has been widely reported. In particular, oxygen vacancy modulation on electrocatalysts of cobalt‐based TMOs has seen a fresh spike of research work due to the substantial improvements they have shown towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Oxygen vacancy engineering is an effective scheme to quintessentially tune the electronic structure and charge transport, generate secondary active surface phases, and modify the surface adsorption/desorption behavior of reaction intermediates during water splitting. Based on contemporary efforts for inducing oxygen vacancies in a variety of cobalt oxide types, this work addresses facile and environmentally benign synthesis strategies, characterization techniques, and detailed insight into the intrinsic mechanistic modulation of electrocatalysts. It is our foresight that appropriate utilization of the principles discussed herein will aid researchers in rationally designing novel materials that can outperform noble metal‐based electrocatalysts. Ultimately, future electrocatalysis implementation for selective seawater splitting is believed to depend on regulating the surface chemistry of active and stable TMOs.
Oxygen vacancies in complex metal oxides and specifically in perovskites are demonstrated to significantly enhance their electrocatalytic activities due to facilitating a degree of control in the material’s intrinsic properties. The reported enhancement in intrinsic OER activity of oxygen-deficient perovskites surfaces has inspired their fabrication via a myriad of schemes. Oxygen vacancies in perovskites are amongst the most favorable anionic or Schottky defects to be induced due to their low formation energies. This review discusses recent efforts for inducing oxygen vacancies in a multitude of perovskites, including facile and environmentally benign synthesis strategies, characterization techniques, and detailed insight into the intrinsic mechanistic modulation of perovskite electrocatalysts. Experimental, analytical, and computational techniques dedicated to the understanding of the improvement of OER activities upon oxygen vacancy induction are summarized in this work. The identification and utilization of intrinsic activity descriptors for the modulation of configurational structure, improvement in bulk charge transport, and favorable inflection of the electronic structure are also discussed. It is our foresight that the approaches, challenges, and prospects discussed herein will aid researchers in rationally designing highly active and stable perovskites that can outperform noble metal-based OER electrocatalysts.
Herein, low-density polyethylene (LDPE) films were treated using radio-frequency plasma discharge in the presence of air, nitrogen, oxygen, argon, and their mixtures to introduce new chemical functionalities. The surface properties of treated LDPE were qualitatively and quantitatively characterized using various analytical and microscopic techniques. It was found that the optimum plasma treatment for LDPE occurs in the presence of air plasma at an exposure time of 120 s and 80 W of nominal power. The plasma formed layer had tendency to increasing thickness with increasing treatment time up to 60 s using air and oxygen and even more with inert gases. An aging study of plasma-treated LDPE samples stored in ambient air or water medium revealed the partial hydrophobic recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.