In cardiac myocytes, regulation of mitochondrial Ca2+ is important for cellular signaling and cardiac contraction. Ca2+ entry into the mitochondria is mediated by a highly selective Ca2+ channel called the mitochondrial calcium uniporter, which consists of a pore-forming subunit MCU and regulatory subunits such as MICU1. Although pharmacological regulation of the mitochondrial Ca2+ influx is a promising approach to controlling the cellular functions, a cell-permeable and specific inhibitor of the mitochondrial calcium uniporter has not yet been developed. Here, we identify a novel cell-permeable inhibitor of the uniporter by a high-throughput screening of 120 000 small-molecule compounds. In our study, DS16570511 dose-dependently inhibited serum-induced mitochondrial Ca2+ influx in HEK293A cells with an IC50 of 7 μM. DS16570511 inhibited Ca2+ uptake of isolated mitochondria from human cells, rat heart and pig heart. Overexpression of hMCU or hMICU1 in HEK293A cells increased mitochondrial Ca2+ influx, and the increases were completely suppressed by the pretreatment with DS16570511. DS16570511 also blocks mitochondrial Ca2+ overload in a Langendorff perfused beating rat heart. Interestingly, DS16570511 increased cardiac contractility without affecting heart rate in the perfused heart. These results show that DS16570511 is a novel cell-permeable inhibitor of the mitochondrial calcium uniporter and applicable for control of the cardiac functions.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.