Facile synthesis of dibenzoporphyrins(2.1.2.1) has been successfully reported by the simple condensation reaction of o-dipyrrolylbenzene with various aldehydes in the presence of a Lewis acid. This reaction enables the preparation of various dibenzoporphyrin(2.1.2.1) derivatives with p-substituted phenyl groups, five-membered heterocycles, and ethynyl groups at the meso-positions. Dibenzoporphyrins(2.1.2.1) consist of two dipyrrin units that are connected by o-phenylene bridges, which adopt highly bent saddle-shaped structures; this was confirmed by X-ray diffraction analysis. We found that dibenzoporphyrin(2.1.2.1) can be described as a 20π antiaromatic conjugated system, but practically, it is not an antiaromatic macrocycle, which we revealed by (1) H NMR spectroscopy. The redox potentials had good correlations with Hammett substituent constant (σp ) of the substituents at the meso-positions. The free-base dibenzoporphyrin(2.1.2.1) was able to form the metal complexes with nickel(II), copper(II), palladium(II), platinum(II), and tin(IV) ions. These results suggested that dibenzoporphyrin(2.1.2.1) derivatives can be utilized as novel macrocyclic dianionic tetradentate ligands for various metal ions to give complexes with varying optical and electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.