A method to build an image-based model from a high-resolution X-ray CT image has been proposed for crystal plasticity nite element (CPFE) analysis in this study. The grain microstructures of aluminum alloy were captured by X-ray CT in synchrotron radiation facility, SPring-8. An image-based model of crystallographic grains was reproduced by the proposed method, and the model was analyzed by CPFE. By this, it was represented that deformation analysis of a polycrystal microstructure considering actual grain shapes was available suggesting that the deformation mechanism would be made clear by the image-based CPFE with further work.
The presence of heterogeneous deformation is a one of key issue in a prediction model of deformation texture development. Recently, not only local strain mapping but also crystallographic orientation mapping is possible to obtain within aluminum alloy by using synchrotron radiation. In this study, local strain mapping and orientation mapping were obtained by microtomography and three-dimensional X-ray diffraction using synchrotron radiation in Al-4Pb alloy. Simulation of deformation texture evolution has been performed based on crystal plasticity model. The simulation started from actual microstructure and the obtained local strain was applied. The simulation produced similar microstructure to the actual one. Therefore, heterogeneous strain distribution is very important for the development of deformation texture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.