Disease recurrence is the major problem in the treatment of acute myeloid leukemia (AML). Relapse is driven by leukemia stem cells, a chemoresistant subpopulation capable of re-establishing disease. Patients with p53 mutant AML are at an extremely high risk of relapse. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of AML stem cells. Here we studied the effects of a novel small molecule inhibitor of BMI-1, PTC596, in AML cells. Treatment with PTC596 reduced MCL-1 expression and triggered several molecular events consistent with induction of mitochondrial apoptosis: loss of mitochondrial membrane potential, BAX conformational change, caspase-3 cleavage and phosphatidylserine externalization. PTC596 induced apoptosis in a p53-independent manner. PTC596 induced apoptosis along with the reduction of MCL-1 and phosphorylated AKT in patient-derived CD34+CD38low/− stem/progenitor cells. Mouse xenograft models demonstrated in vivo anti-leukemia activity of PTC596, which inhibited leukemia cell growth in vivo while sparing normal hematopoietic cells. Our results indicate that PTC596 deserves further evaluation in clinical trials for refractory or relapsed AML patients, especially for those with unfavorable complex karyotype or therapy-related AML that are frequently associated with p53 mutations.
Curing patients with acute myeloid leukemia (AML) remains a therapeutic challenge. The polycomb complex protein B‐cell‐specific Moloney murine leukemia virus integration site 1 (BMI‐1) is required for the self‐renewal and maintenance of leukemia stem cells. We investigated the prognostic significance of BMI‐1 in AML and the effects of a novel small molecule selective inhibitor of BMI‐1, PTC‐209. BMI‐1 protein expression was determined in 511 newly diagnosed AML patients together with 207 other proteins using reverse‐phase protein array technology. Patients with unfavorable cytogenetics according to Southwest Oncology Group criteria had higher levels of BMI‐1 compared to those with favorable (P = 0.0006) or intermediate cytogenetics (P = 0.0061), and patients with higher levels of BMI‐1 had worse overall survival (55.3 weeks vs. 42.8 weeks, P = 0.046). Treatment with PTC‐209 reduced protein level of BMI‐1 and its downstream target mono‐ubiquitinated histone H2A and triggered several molecular events consistent with the induction of apoptosis, this is, loss of mitochondrial membrane potential, caspase‐3 cleavage, BAX activation, and phosphatidylserine externalization. PTC‐209 induced apoptosis in patient‐derived CD34+ CD38low/− AML cells and, less prominently, in CD34− differentiated AML cells. BMI‐1 reduction by PTC‐209 directly correlated with apoptosis induction in CD34+ primary AML cells (r = 0.71, P = 0.022). However, basal BMI‐1 expression was not a determinant of AML sensitivity. BMI‐1 inhibition, which targets a primitive AML cell population, might offer a novel therapeutic strategy for AML.
Despite the development of the novel Bruton tyrosine kinase inhibitor ibrutinib, mantle cell lymphoma (MCL) remains an incurable B-cell non-Hodgkin lymphoma. BMI-1 is required for the self-renewal and maintenance of MCL-initiating stem cells. Upregulation of BMI-1 has been reported in MCL patients, especially in those with refractory/relapsed disease. We studied the effects of a novel small-molecule selective inhibitor of BMI1 expression, PTC596, in MCL cells. Eight MCL cell lines and patient-derived samples were exposed to PTC596. PTC596 induced mitochondrial apoptosis, as evidenced by loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. There was a positive correlation between baseline BMI-1 protein levels and PTC596-induced apoptosis. p53 status did not affect sensitivity to PTC596. PTC596 effectively decreased BMI-1-expressing and tumor-initiating side population MCL cells (IC50: 138 nM) compared with ibrutinib, which modestly decreased side population cells. Interestingly, PTC596, reported to target cancer stem cells, decreased MCL-1 expression levels and antagonized ibrutinib-induced increase in MCL-1 expression, leading to synergistic apoptosis induction in MCL cells. There are currently no drugs that specifically target cancer stem cell fractions, and a reduction in BMI-1 protein by PTC596 may offer a novel therapeutic strategy for MCL.
PPM1D is a serine/threonine phosphatase that negatively regulates key DNA damage response proteins, such as p53, p38 MAPK, histone H2A.X, and ATM. We investigated the pathophysiological significance of PPM1D and its therapeutic targeting by the novel PPM1D inhibitor GSK2830371 in mantle cell lymphoma (MCL). Oncomine-based analyses indicated increased PPM1D mRNA levels in MCL cells compared with their normal counterpart cells. Higher PPM1D expression was associated with higher expression of the proliferation gene signature and poorer prognosis in patients. Eight MCL (three p53 wild-type and five mutant) cell lines were exposed to GSK2830371. GSK2830371 inhibited the cell growth, being prominent in p53 wild-type cells. GSK2830371 induced apoptosis in sensitive cells, as evidenced by induction of phosphatidylserine externalization and loss of mitochondrial membrane potential. p53 knockdown de-sensitized cell sensitivity. GSK2830371 increased the levels of total and Ser15-phosphorylated p53, and p53 targets p21 and PUMA. GSK2830371 and the MDM2 inhibitor Nutlin-3a acted synergistically in p53 wild-type cells. Interestingly, GSK2830371 sensitized MCL cells to bortezomib and doxorubicin in p53 wild-type and mutant cells; p38 signaling appeared to be involved in the GSK2830371/bortezomib lethality. PPM1D inhibition may represent a novel therapeutic strategy for MCL, which can be exploited in combination therapeutic strategies for MCL.
A minor fraction of leukemia cells, leukemia stem cells, have been shown to be highly resistant to current therapies and thought to be responsible for recurrence. BMI-1, a part of polycomb repressive complex 1 (PRC1) is essential for the self-renewal of normal hematopoietic and leukemia stem cells. PTC-209 is a novel selective transcriptional inhibitor of BMI-1, which has been shown to have antitumor activity against cancer-initiating cells in colorectal cancer. We investigated the prognostic significance of BMI-1 in acute myeloid leukemia (AML) using reversed phase protein array and effects of the BMI-1 inhibitor PTC-209 on primary and leukemia cell lines. BMI-1 protein expression was determined in bulk AML blasts from 511 newly diagnosed patients. BMI-1 expression was higher in unfavorable cytogenetics (n=252, median 0.068) compared to intermediate (n=225, median -0.116, P = 0.017) or favorable cytogenetics (n=34, median -0.338, P = 0.0007 versus unfavorable, 0.05 versus intermediate). Higher BMI-1 levels were associated with shorter median overall survival (42.8 versus 55.3 weeks, P = 0.046 Log Rank test). There was no correlation between BMI-1 levels and percentages of CD34 -positive cells (r = 0.07). A total of 6 AML (MOLM-13, OCI-AML3, MV4-11, NB4, HL60 and U-937) and 5 ALL (Reh, NALM6, Jurkat, Raji and MOLT-4) cell lines were exposed to PTC-209 for 48 hours. PTC-209 exhibited dose- and time-dependent anti-proliferative and cytotoxic activities. The IC50 values (concentration at which cell growth is inhibited by 50% at 48 hours of exposure) were 0.33 ± 0.04 µM (mean ± SEM) for AML and 0.55 ± 0.09 µM for ALL, indicating potent anti-proliferative effects. In contrast, PTC-209 showed differential cytotoxic effects between AML and ALL cells. The ED50 values (effective concentration inducing 50% killing as measured by Annexin V positivity) were no more than 2.5 µM in 5 of 6 AML lines while they were higher than 10 µM in 3 out of 5 ALL cell lines, implicating that BMI-1 is more critical in AML than ALL. Treatment with PTC-209 triggered several molecular events consistent with induction of apoptosis in sensitive lines (e.g. MV4-11 and MOLM-13): conformational change of BAX (i.e., BAX activation), loss of mitochondrial membrane potential (MMP), caspase-3 activation and DNA fragmentation in addition to phosphatidylserine (PS) externalization. Eighteen-hour treatment of MV4-11 cells with 2.5 µM PTC-209 led to compound-specific induction of conformationally active BAX (31%), MMP loss (80%) and caspase-3 cleavage (38%). qRT-PCR showed reduced transcript level of BMI-1 (61% reduction) after 6-hour PTC-209 exposure in MV4-11 cells. PTC-209 induced PS externalization in primary AML cells (82.5 ± 4.3% after 48-hour treatment with 2 µM PTC-209, n = 6) and to a lesser degree, in ALL cells (33.7 ± 13.4%, n = 4, p < 0.05). Importantly, CD34+CD38– AML progenitor cells were as sensitive to PTC-209 as C34– more mature AML cells. Normal lymphocytes were resistant to PTC-209 (9.1 ± 4.6% even at 10 µM). Collectively, BMI-1 inhibition by small molecule inhibitors could be developed into a novel therapeutic strategy. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.