Nutritional status during pregnancy can have a significant impact on maternal and neonatal health outcomes. Requirements for macronutrients such as energy and protein increase during pregnancy to maintain maternal homeostasis while supporting foetal growth. Energy restriction can limit gestational weight gain in women with obesity; however, there is insufficient evidence to support energy restriction during pregnancy. In undernourished women, balanced energy/protein supplementation may increase birthweight whereas high protein supplementation could have adverse effects on foetal growth. Modulating carbohydrate intake via a reduced glycaemic index or glycaemic load diet may prevent gestational diabetes and large-for-gestational-age infants. Certain micronutrients are also vital for improving pregnancy outcomes, including folic acid to prevent neural tube defects and iodine to prevent cretinism. Newly published studies support the use of calcium supplementation to prevent hypertensive disorders of pregnancy, particularly in women at high risk or with low dietary calcium intake. Although gaps in knowledge remain, research linking nutrition during pregnancy to maternofoetal outcomes has made dramatic advances over the last few years. In this review, we provide an overview of the most recent evidence pertaining to macronutrient and micronutrient requirements during pregnancy, the risks and consequences of deficiencies and the effects of supplementation on pregnancy outcomes.
The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. Based on the current literature, it appears that as the gut microbiota composition differs between individuals and is contingent on a variety of factors like diet and genetics, some individuals may possess bacteria associated with pro-inflammatory effects whilst others may harbour those with anti-inflammatory effects. Recent technological advancements have allowed for better methods of characterising the gut microbiota. Further research to continually improve our understanding of the inflammatory pathways that interact with bacteria may elucidate reasons behind varying presentations of the same disease and varied responses to the same treatment in different individuals. Furthermore, it can inform clinical practice as anti-inflammatory microbes can be employed in probiotic therapies or used to identify suitable prebiotic therapies.
Vitamin D supplementation has been proposed as a potential strategy to prevent type 2 diabetes. Existing clinical trials have been limited by short duration, low doses of vitamin D, variability in participants' vitamin D-deficiency status, and the use of surrogate measures of body composition, insulin sensitivity, and insulin secretion. To address existing knowledge gaps, we conducted a double-blind, randomized, placebo-controlled trial to investigate whether vitamin D supplementation that is provided in a sufficient dose and duration to vitamin D-deficient individuals would improve insulin sensitivity or secretion as measured with the use of gold-standard methods. We hypothesized that vitamin D supplementation would improve insulin sensitivity and secretion compared with placebo. Sixty-five overweight or obese, vitamin D-deficient (25-hydroxyvitamin D [25(OH)D] concentration ≤50 nmol/L) adults were randomly assigned to receive either a bolus oral dose of 100,000 IU cholecalciferol followed by 4000 IU cholecalciferol/d or a matching placebo for 16 wk. Before and after the intervention, participants received gold-standard assessments of body composition (via dual X-ray absorptiometry), insulin sensitivity (via hyperinsulinemic-euglycemic clamps), and insulin secretion [via intravenous-glucose-tolerance tests (IVGTTs)]. Fifty-four participants completed the study [35 men and 19 women; mean ± SD age: 31.9 ± 8.5 y; body mass index (in kg/m): 30.9 ± 4.4]. 25(OH)D increased with vitamin D supplementation compared with placebo (57.0 ± 21.3 compared with 1.9 ± 15.1 nmol/L, respectively; = 0.02). Vitamin D and placebo groups did not differ in change in insulin sensitivity (0.02 ± 2.0 compared with -0.03 ± 2.8 mg · kg · min, respectively; = 0.9) or first-phase insulin secretion (-21 ± 212 compared with 24 ± 184 mU/L, respectively; = 0.9). Results remained nonsignificant after adjustment for age, sex, percentage of body fat, sun exposure, physical activity, and dietary vitamin D intake ( > 0.1). Vitamin D supplementation does not improve insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults, despite using high-dose vitamin D supplementation and robust endpoint measures. Therefore, it is unlikely that vitamin D supplementation would be an effective strategy for reducing diabetes risk even in vitamin D-deficient populations. This trial was registered at clinicaltrials.gov as NCT02112721.
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
PROSPERO CRD42016047755. Available at: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=47755 (9/15/2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.