Brain vascular pericytes (PCs) are a key component of the blood-brain barrier (BBB)/neurovascular unit, along with neural and endothelial cells. Besides their crucial role in maintaining the BBB, increasing evidence shows that PCs have multipotential stem cell activity. However, their multipotency has not been considered in the pathological brain, such as after an ischemic stroke. Here, we examined whether brain vascular PCs following ischemia (iPCs) have multipotential stem cell activity and differentiate into neural and vascular lineage cells to reconstruct the BBB/neurovascular unit. Using PCs extracted from ischemic regions (iPCs) from mouse brains and human brain PCs cultured under oxygen/glucose deprivation, we show that PCs developed stemness presumably through reprogramming. The iPCs revealed a complex phenotype of angioblasts, in addition to their original mesenchymal properties, and multidifferentiated into cells from both a neural and vascular lineage. These data indicate that under ischemic/hypoxic conditions, PCs can acquire multipotential stem cell activity and can differentiate into major components of the BBB/neurovascular unit. Thus, these findings support the novel concept that iPCs can contribute to both neurogenesis and vasculogenesis at the site of brain injuries.
ObjectiveGaucher disease (GD) is a lysosomal storage disease characterized by a deficiency of glucocerebrosidase. Although enzyme‐replacement and substrate‐reduction therapies are available, their efficacies in treating the neurological manifestations of GD are negligible. Pharmacological chaperone therapy is hypothesized to offer a new strategy for treating the neurological manifestations of this disease. Specifically, ambroxol, a commonly used expectorant, has been proposed as a candidate pharmacological chaperone. The purpose of this study was to evaluate the safety, tolerability, and neurological efficacy of ambroxol in patients with neuronopathic GD.MethodsThis open‐label pilot study included five patients who received high‐dose oral ambroxol in combination with enzyme replacement therapy. Safety was assessed by adverse event query, physical examination, electrocardiography, laboratory studies, and drug concentration. Biochemical efficacy was assessed through evidence of glucocerebrosidase activity in the lymphocytes and glucosylsphingosine levels in the cerebrospinal fluid. Neurological efficacy was evaluated using the Unified Myoclonus Rating Scale, Gross Motor Function Measure, Functional Independence Measure, seizure frequency, pupillary light reflex, horizontal saccadic latency, and electrophysiologic studies.ResultsHigh‐dose oral ambroxol had good safety and tolerability, significantly increased lymphocyte glucocerebrosidase activity, permeated the blood–brain barrier, and decreased glucosylsphingosine levels in the cerebrospinal fluid. Myoclonus, seizures, and pupillary light reflex dysfunction markedly improved in all patients. Relief from myoclonus led to impressive recovery of gross motor function in two patients, allowing them to walk again.InterpretationPharmacological chaperone therapy with high‐dose oral ambroxol shows promise in treating neuronopathic GD, necessitating further clinical trials.
BackgroundMicroglia are the resident macrophage population of the central nervous system (CNS) and play essential roles, particularly in inflammation-mediated pathological conditions such as ischemic stroke. Increasing evidence shows that the population of vascular cells located around the blood vessels, rather than circulating cells, harbor stem cells and that these resident vascular stem cells (VSCs) are the likely source of some microglia. However, the precise traits and origins of these cells under pathological CNS conditions remain unclear.MethodsIn this study, we used a mouse model of cerebral infarction to investigate whether reactive pericytes (PCs) acquire microglia-producing VSC activity following ischemia.ResultsWe demonstrated the localization of ionized calcium-binding adaptor molecule 1 (Iba1)-expressing microglia to perivascular regions within ischemic areas. These cells expressed platelet-derived growth factor receptor-β (PDGFRβ), a hallmark of vascular PCs. PDGFRβ+ PCs isolated from ischemic, but not non-ischemic, areas expressed stem/undifferentiated cell markers and subsequently differentiated into various cell types, including microglia-like cells with phagocytic capacity.ConclusionsThe study results suggest that vascular PCs acquire multipotent VSC activity under pathological conditions and may thus be a novel source of microglia.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0523-9) contains supplementary material, which is available to authorized users.
Neuronopathic Gaucher disease (nGD) has a very wide clinical and genotypic spectrum. However, there is no consensus definition of nGD, including no description of how best to diagnostically separate the acute form—Gaucher type 2—from the subacute or chronic form—Gaucher type 3. In this article, we define the various forms of Gaucher disease with particular emphasis on the presence of gaze palsy in all patients with nGD. This consensus definition will help in both clinical diagnosis and appropriate patient recruitment to upcoming clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.