Original scientific paper https://doi.org/10.2298/TSCI160413083AThe effects of Hall current and Joule heating on flow and heat transfer of a nanofluid along a vertical cone in the presence of thermal radiation is considered. The flow is subjected to a uniform strong transverse magnetic field normal to the cone surface. Similarity transformations are used to convert the non-linear boundary-layer equations for momentum and energy equations to a system of non-linear ordinary differential equations which are then solved numerically with appropriate boundary conditions. The solutions are presented in terms of local skin friction, local Nusselt number, velocity, and temperature profiles for values of magnetic parameter, Hall parameter, Eckert number, radiation parameter, and nanoparticle volume fraction. Comparison of the numerical results made with previously published results under the special cases, the results are found to be in an excellent agreement. It is also found that, nanoparticle volume fraction parameter and types of nanofluid play an important role to significantly determine the flow behavior.
The current article aims at investigating the effect of a periodic tangential magnetic field on the stability of a horizontal flat sheet. The media were considered porous, the three viscous-fluid layers were initially streaming with uniform velocities, and the magnetic field admitted the presence of free-surface currents. Furthermore, the transfer of mass and heat phenomenon was taken into account. The analysis, in this paper, was followed by the viscous potential theory. Moreover, the stability of the boundary-value problem resulted in coupled secondorder linear differential equations with damping and complex coefficients. In regard to the uniform and periodic magnetic field, the standard normal mode approach was applied to deduce a general dispersion relation and judge the stability criteria. In addition, several unfamiliar cases were reported, according to appropriate data choices. The stability conditions were theoretically analyzed, and the influences of the various parameters in the stability profile were identified through a set of diagrams. In accordance wth the oscillating field, the coupled dispersion equations were combined to give the established Mathieu equation. Therefore, the governed transition curves were, theoretically, obtained. Finally, the results were numerically confirmed. K E Y W O R D S magnetic field, mass and heat transfer, porous media, stability analysis, viscous potential flow
The modeling of unidirectional propagation of long water waves in dispersive media is presented. The Korteweg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations are derived from water waves models. New traveling solutions of the KdV and BBM equations are obtained by implementing the extended direct algebraic and extended sech-tanh methods. The stability of the obtained traveling solutions is analyzed and discussed.
The Olver equation is governing a unidirectional model for describing long and small amplitude waves in shallow water waves. The solitary wave solutions of the Olver and fifth-order KdV equations can be obtained by using extended tanh and sech-tanh methods. The present results are describing the generation and evolution of such waves, their interactions, and their stability. Moreover, the methods can be applied to a wide class of nonlinear evolution equations. All solutions are exact and stable and have applications in physics.
The current work examines the application of the viscous potential flow to the Kelvin-Helmholtz instability (KHI) of a planar interface between two visco-elastic Walters’ B fluids. The fluids are fully saturated in porous media in the presence of heat and mass transfer across the interface. Additionally, the structure is pervaded via a uniform, normal electrical field in the absence of superficial charges. The nonlinear scheme basically depends on analyzing the linear principal equation of motion, and then applying the appropriate nonlinear boundary-conditions. The current organization creates a nonlinear characteristic equation describing the amplitude performance of the surface waves. The classical Routh–Hrutwitz theory is employed to judge the linear stability criteria. Once more, the implication of the multiple time scale with the aid of Taylor theory yields a Ginzburg–Landau equation, which controls the nonlinear stability criteria. Furthermore, the Poincaré–Lindstedt technique is implemented to achieve an analytic estimated bounded solution for the surface deflection. Many special cases draw upon appropriate data selections. Finally, all theoretical findings are numerically confirmed in such a way that ensures the effectiveness of various physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.