We present an efficient query evaluation method based on a two level approach: at the first level, our method iterates in parallel over query term postings and identifies candidate documents using an approximate evaluation taking into account only partial information on term occurrences and no query independent factors; at the second level, promising candidates are fully evaluated and their exact scores are computed. The efficiency of the evaluation process can be improved significantly using dynamic pruning techniques with very little cost in effectiveness. The amount of pruning can be controlled by the user as a function of time allocated for query evaluation. Experimentally, using the TREC Web Track data, we have determined that our algorithm significantly reduces the total number of full evaluations by more than 90%, almost without any loss in precision or recall.At the heart of our approach there is an efficient implementation of a new Boolean construct called WAND or Weak AND that might be of independent interest.
Most of the work on XML query and search has stemmed from the publishing and database communities, mostly for the needs of business applications. Recently, the Information Retrieval community began investigating the XML search issue to answer information discovery needs. Following this trend, we present here an approach where information needs can be expressed in an approximate manner as pieces of XML documents or "XML fragments" of the same nature as the documents that are being searched. We present an extension of the vector space model for searching XML collections via XML fragments and ranking results by relevance. We describe how we have extended a fulltext search engine to comply with this model. The value of the proposed method is demonstrated by the relative high precision of our system, which was among the top performers in the recent INEX workshop. Our results indicate that certain queries are more appropriate than others for the extended vector space model. Specifically, queries with relatively specific contexts but vague information needs are best situated to reap the benefit of this model. Finally our results show that one method may not fit all types of queries and that it could be worthwhile to use different solutions for different applications.
No abstract
This work describes an automatic query refinement technique, which focuses on improving precision of the top ranked documents. The terms used for refinement are lexical affinities (LAs), pairs of closely related words which contain exactly one of the original query terms. Adding these terms to the query is equivalent to re-ranking search results, thus, precision is improved while recall is preserved. We describe a novel method that selects the most "informative" LAs for refinement, namely, those LAs that best separate relevant documents from irrelevant documents in the set of results. The information gain of candidate LAs is determined using unsupervised estimation that is based on the scoring function of the search engine. This method is thus fully automatic and its quality depends on the quality of the scoring function. Experiments we conducted with TREC data clearly show a significant improvement in the precision of the top ranked documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.