Amyloid plaques and neurofibrillary tangles (NFTs) are the major pathological characteristics of Alzheimer's disease (AD). NFTs are composed of tubular filaments and paired helical filaments containing polymerized hyperphosphorylated tau protein. Another feature of AD is excessive generation of nitric oxide (NO). Protein disulfide isomerase (PDI) is a chaperon protein located in the endoplasmic reticulum (ER). It was recently reported that NO-induced S-nitrosylation of PDI inhibits its enzymatic activity, leading to the accumulation of polyubiquitinated proteins, and activates the unfolded protein response. In addition, we previously reported the presence of PDI-immunopositive NFTs in AD. Here, we found that protein disulfide isomerase P5 (P5), which is a member of the PDI protein family, was co-localized with tau in NFTs. To our knowledge, this is the first report of P5-immunopositive inclusion in AD. Furthermore, we showed that S-nitrosylated P5 was present and the expression level of P5 was decreased in AD brains compared with that of control brains. We also demonstrated that the knock-down of PDI or P5 by siRNA could affect the viability of SH-SY5Y cells under ER stress. Previously, the observation of S-nitrosylated PDI in AD was reported. NO may inhibit P5 by inducing S-nitrosylation in the same manner as PDI, which inhibits its enzymatic activity allowing protein misfolding to occur in AD. The accumulation of misfolded proteins induces ER stress and may cause apoptosis of neuronal cells through S-nitrosylation and down-regulation of PDI and P5 in AD.
The bioluminescence system (luciferase reporter assay system) is widely used to study gene expression, signal transduction and other cellular activities. Although transfection of reporter plasmid DNA to mammalian cell lines is an indispensable experimental step, the transfection efficiency of DNA varies among cell lines, and several cell lines are not suitable for this type of assay because of the low transfection efficiency. In this study, we confirm the transfection efficiency of reporter DNA to several cancer and normal cell lines after transient transfection by single-cell imaging. Luminescence images could be obtained from living single cells after transient transfection, and the calculated transfection efficiency of this method was similar to that of the conventional reporter assay using a luminometer. We attempted to measure the activity of the Bip promoter under endoplasmic reticulum stress conditions using both high and low transfection efficiency cells for plasmid DNA at the single-cell level, and observed activation of this promoter even in cells with the lowest transfection efficiency. These results show that bioluminescence imaging of single cells is a powerful tool for the analysis of gene expression based on a reporter assay using limited samples such as clinical specimens or cells from primary culture, and could provide additional information compared with the conventional assay.
BackgroundHeat-shock protein 90 (Hsp90) is vital to cell survival under conditions of stress, and binds client proteins to assist in protein stabilization, translocation of polypeptides across cell membranes, and recovery of proteins from aggregates. Therefore, Hsp90 has emerged as an important target for the treatment of cancer. We previously reported that novel Antp-TPR hybrid peptide, which can inhibit the interaction of Hsp90 with the TPR2A domain of Hop, induces selective cytotoxic activity to discriminate between normal and cancer cells both in vitro and in vivo.ResultsIn this study, we investigated the functional cancer-cell killing mechanism of Antp-TPR hybrid peptide in glioblastoma (GB) cell lines. It was demonstrated that Antp-TPR peptide induced effective cytotoxic activity in GB cells through the loss of Hsp90 client proteins such as p53, Akt, CDK4, and cRaf. Antp-TPR also did not induce the up-regulation of Hsp70 and Hsp90 proteins, although a small-molecule inhibitor of Hsp90, 17-AAG, induced the up-regulation of these proteins. It was also found that Antp-TPR peptide increased the endoplasmic reticulum unfolded protein response, and the cytotoxic activity of this hybrid peptide to GB cells in the endoplasmic reticulum stress condition.ConclusionThese results show that targeting of Hsp90 by Antp-TPR could be an attractive approach to selective cancer-cell killing because no other Hsp90-targeted compounds show selective cytotoxic activity. Antp-TPR might provide potent and selective therapeutic options for the treatment of cancer.
Cancer cells require the regulation of organelle-specific unfolded protein responses, such as endoplasmic reticulum (ER) stress, because of their increased metabolic activity during rapid proliferation and cell growth, which are executed through the activation of diverse signaling pathways. In this study, we focused on the dynamic regulation of ER stress in accordance with cancer cellular demand, and we performed real-time monitoring of the activation of the binding immunoglobulin protein (Bip) promoter, which is one of the most responsive genes to ER stress during cancer cell growth, in two and three dimensional (2D and 3D) cell culture using bioluminescence imaging at the single-cell level. Bioluminescence images were obtained from living single cancer cells after transient transfection of the reporter gene, and we observed Bip promoter activation during cell growth. Bip promoter activation was also observed in 2D and 3D culture using stably transfected glioblastoma cancer cells with the reporter gene. The Bip promoter was activated especially in dividing cells during cell growth. We then performed real-time monitoring of Bip promoter activation by bioluminescence imaging in tissue slices obtained from U251/pBipPro-Luc tumors. Luminescence intensity was not constant and was different in individual regions of the tumor slices, and the Bip promoter was activated in several regions during monitoring in vitro. These results show that real-time monitoring by bioluminescence imaging at the single-cell level is a suitable tool for not only gene analysis of signal transduction and regulation of the dynamics of the unfolded protein response in cancer cells but also for the evaluation of the efficacy of anti-cancer agents, and could provide additional information that has been difficult to obtain using conventional assays.
It is known that endoplasmic reticulum (ER) stress in cells and extracellular vesicles (EVs) plays a significant role in cancer cells, therefore the evaluation of compounds that can regulate ER stress and EV secretion would be a suitable system for further screening and development of new drugs. In this study, we evaluated chemical chaperones derived from natural products based on monitoring Bip/GRP78 promoter activity during cancer cell growth, at the level of the single cell, by a bioluminescence microscopy system that had several advantages compared with fluorescence imaging. It was found that several chemical chaperones, such as ferulic acid (FA), silybin, and rutin, affected the activity. We visualized EVs from cancer cells using bioluminescence imaging and showed that several EVs could be observed when using CD63 fused with NanoLuc luciferase, which has a much smaller molecular weight and higher intensity than conventional firefly luciferase. We then examined the effects of the chemical chaperones on EVs from cancer cells by bioluminescence imaging and quantified the expression of CD63 in these EVs. It was found that the chemical chaperones examined in this study affected CD63 levels in EVs. These results showed that imaging at the level of the single cell using bioluminescence is a powerful tool and could be used to evaluate chemical chaperones and EVs from cancer cells. This approach may produce new information in this field when taken together with conventional and classical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.