A precise flip-chip bonding (FCB) technology for indium phosphide semiconductor optical amplifiers (InP-SOAs) on a silicon photonics platform within less than ±1-µm alignment accuracy was developed. For efficient optical coupling and a relaxed alignment tolerance, the mode field on both the InP-SOAs and the Si waveguides was expanded by spot-size converters (SSCs). On the InP-SOAs, width-tapered SSCs were used to obtain an isotropic mode-field having an approximately a 3-µm diameter. On the silicon photonics platform, dual-core SSCs were used to expand the same mode-field size of 3 µm as for the SSCs on SOAs. Using the FCB technology and the SSCs, an in-line optical amplification of 15 dB was achieved by in-line integrated SOAs with angled waveguides. The optical coupling losses were 7.7 dB, which included 5.1-dB excess losses by misalignment and a gap between InP-SOA and Si waveguides. A 4 × 4 Si switch with a hybrid-integrated 4-ch SOA array was fabricated, and achieved the first demonstration of a lossless Si switch.
We demonstrated transverse-magnetic (TM)-mode dominated gain at the 1.5μm wavelength in semiconductor optical amplifiers (SOAs) with columnar quantum dots (QDs). We show that we can control the polarization dependence of optical gain in QD-SOAs by changing the height and tensile-strained barrier of columnar QDs. The TM mode gain is 17.3dB and a gain of over 10dB was attained over a wide wavelength range of 200nm. The saturation output power is 19.5dBm at 1.55μm.
We experimentally demonstrate the lossless transmission of wavelength division multiplexing (WDM) signals through a silicon-photonics 4 × 4 switch with a flip-chip bonded 4-channel semiconductor optical amplifier (SOA). We first optimized the input power and gain of the SOA-integrated switch to obtain the optimum operation point in terms of the transmitted signal quality. We then performed simultaneous transmission of 8-ch, 32-Gbaud, SP 16-QAM WDM (800 Gb/s) signals through all the four paths of the switch. The effect of crosstalk on the switch was very small, and thus could not be observed. We also examined multistage (up to four stages) transmission of the signals with circulating configurations. We show that even for a 4-stage transmission, the bit error rate of the transmitted signal is below the 20% forward-error-correction limit. Finally, we discuss approaches to improve the optical signalto-noise ratio of the transmitted signals to enlarge the signal quality margin and increase the possible number of the cascading stages and/or WDM channels for wide applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.