We fabricate a 32 × 32 silicon photonics switch on a 300-mm silicon-on-insulator wafer by using our complementary metal-oxide-semiconductor pilot line equipped with an immersion ArF scanner and demonstrate an average fiber-to-fiber insertion loss of 10.8 dB with a standard deviation of 0.54 dB, and on-chip electric power consumption of 1.9 W. The insertion loss and the power consumption are approximately 1/60, and less than 1/4 of our previous results, respectively. These significant improvements are achieved by design and fabrication optimization of waveguides and intersections on the chip, and by employing a novel optical fiber connector based on extremely-high-Δ silica planarlightwave-circuit (PLC) technology. The minimum crosstalk was −26.6 dB at a wavelength of 1547 nm, and −20-dB crosstalk bandwidth was 3.5 nm. Furthermore, we demonstrate low-crosstalk bandwidth expansion by using output port exchanged element switches. We achieve a −20 dB crosstalk bandwidth of 14.2 nm, which is four-times wider than that of the conventional element switch based 32 × 32 switch.
A precise flip-chip bonding (FCB) technology for indium phosphide semiconductor optical amplifiers (InP-SOAs) on a silicon photonics platform within less than ±1-µm alignment accuracy was developed. For efficient optical coupling and a relaxed alignment tolerance, the mode field on both the InP-SOAs and the Si waveguides was expanded by spot-size converters (SSCs). On the InP-SOAs, width-tapered SSCs were used to obtain an isotropic mode-field having an approximately a 3-µm diameter. On the silicon photonics platform, dual-core SSCs were used to expand the same mode-field size of 3 µm as for the SSCs on SOAs. Using the FCB technology and the SSCs, an in-line optical amplification of 15 dB was achieved by in-line integrated SOAs with angled waveguides. The optical coupling losses were 7.7 dB, which included 5.1-dB excess losses by misalignment and a gap between InP-SOA and Si waveguides. A 4 × 4 Si switch with a hybrid-integrated 4-ch SOA array was fabricated, and achieved the first demonstration of a lossless Si switch.
We fabricate and characterize a polarizationdiversity 32 × 32 silicon photonics switch by newly introducing SiN overpass waveguides onto our nonduplicate polarization-diversity path-independent insertion-loss switch. The SiN overpass waveguides are used to simplify the optical paths with a uniform path length between the edge couplers and the switch matrix and significantly reduce the number of waveguide intersections. The switch chip is fabricated using a 300-mm silicon-on-insulator wafer pilot line. The fabricated switch comprises more than 7,600 components, making this the largest ever complementary-metal-oxidesemiconductor-based silicon photonics circuit. The switch chip is electrically and optically packaged and evaluated for a sampled port connection with 32 paths, with an average on-chip loss of ∼35 dB and an average polarization-dependent loss of 3.2 dB where 75% of the measured paths exhibit a loss of less than 3 dB. The differential group delay is measured to be 1.7 ps. The performance can be further improved by optimizing the device design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.