This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. AbstractIntroduction: Epigenetic information such as DNA methylation is a useful biomarker that reflects complex gene-environmental interaction. Peripheral tissues such as blood and saliva are commonly collected as the source of genomic DNA in cohort studies. Epigenetic studies mainly use blood, while a few studies have addressed the epigenetic characteristics of saliva. Methods:The effects of methods for DNA extraction and purification from saliva on DNA methylation were surveyed using Illumina Infinium HumanMethylation450BeadChip. Using 386 661 probes, DNA methylation differences between blood and saliva from 22 healthy volunteers, and their functional and structural characteristics were examined. CpG sites with DNA methylation levels showing large interindividual variations in blood were evaluated using saliva DNA methylation profiles.Results: Genomic DNA prepared by simplified protocol from saliva showed a similar quality DNA methylation profile to that derived from the manufacturer provided protocol. Consistent with previous studies, the DNA methylation profiles of blood and saliva showed high correlations. Blood showed 1,514 hypomethylated and 2099 hypermethylated probes, suggesting source-dependent DNA methylation patterns. CpG sites with large methylation difference between the two sources were underrepresented in the promoter regions and enriched within gene bodies. CpG sites with large interindividual methylation variations in blood also showed considerable variations in saliva. Conclusion:In addition to high correlation in DNA methylation profiles, CpG sites showing large interindividual DNA methylation differences were similar between blood and saliva, ensuring saliva could be a suitable alternative source for genomic DNA in cohort studies. Consideration of source-dependent DNA methylation differences will, however, be necessary. K E Y W O R D S biomarker, blood, epigenetics, interindividual variation S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Murata Y, Fujii A, Kanata S, et al. Evaluation of the usefulness of saliva for DNA methylation analysis in cohort studies. Neuropsychopharmacol Rep.
Recent epigenetic age studies suggested accelerated aging in schizophrenia. Although antipsychotics may modulate epigenetic age, direct estimation of their roles was impeded when tissues derived from patients were used for analysis. By using a cellular model, we found that antipsychotics generally worked as epigenetic age regulators in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.