In this paper, we report a successful fabrication of a highly nonlinear chalcogenide all-solid hybrid microstructured optical fiber with polarization maintaining properties and a mid-infrared SC generation. Up to 4.5 × 10−4 at 10 µm of the fiber birefringence can be realized by employing a single As2Se3 core and two As2S5 rods horizontally aligned in the AsSe2 cladding. The fiber possesses a near-zero and flattened all-normal chromatic dispersion profile over the wavelength range from 5 to 10 µm. The polarization maintaining properties of the fiber is experimentally confirmed and a broadband supercontinuum spectrum from 2 to 10 µm in the mid-infrared window was experimentally demonstrated.
Aiming at maintaining the chromatic dispersion properties and fiber optical parametric amplification (FOPA) performance when fiber core fluctuation occurs, we propose a buffer step-index optical fiber. The AsSe2 chalcogenide glass is employed as the core material due to its high nonlinearity and broad transmission spectrum. The calculated results in this study show that the chromatic dispersion variation due to the change of core diameter can be greatly suppressed and a continuous and very broad FOPA signal gain spectrum can be obtained and maintained by carefully controlling the core, buffer and cladding properties such as refractive index and diameters. The calculated results in this study showed that by using the proposed 3-cm-long fiber pumped at 5.02 µm, a broad signal gain bandwidth from 3 to 14 µm at about 15 dB is attainable although the fiber core diameter Dc drastically fluctuated from 2 to 5 µm and the buffer diameter Db varies from 8.9 to 9.3 µm. Moreover, when Dc varies in smaller range from 3 to 4 µm, the FOPA signal gain spectra calculated at different fixed values of Db in the range from 8.9 to 9.3 µm are highly maintained. When Db is kept at 9.0 µm and Dc varies from 3 to 4 µm, the calculated FOPA signal gain spectra at different pump wavelengths from 4.98 to 5.02 µm are also nearly identical in the wavelength range from 3 up to 13 µm.
In this work, chalcogenide all-solid hybrid microstructured optical fibers (Ch-ASHMOF) using As2Se3, As2S5 and AsSe2 glasses are proposed. The polarization-maintaining properties are induced by breaking the symmetry of the rod arrangement and the core shape. The fibers have all-normal chromatic dispersion profiles which are flattened about -10 ps/km/nm over a wavelength range from 5 to 10 m and the birefringence values are up to 4.5x10-4 at 10 μm. By pumping the fiber with a 200-fs-pulse laser source at 5.3 μm, a broad supercontinuum generation from 2 to 10 μm in the mid-infrared window is experimentally demonstrated.
We report a successful fabrication of a chalcogenide all-solid hybrid microstructured optical fiber. The polarization maintaining properties of the fiber is confirmed and a broadband supercontinuum spectrum from 2 to 10 µm is experimentally demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.