Duckweeds are small, fast growing, and starch- and protein-rich aquatic plants expected to be a next generation energy crop and an excellent biomaterial for phytoremediation. Despite such an importance, very little is known about duckweed–microbe interactions that would be a key biological factor for efficient industrial utilization of duckweeds. Here we first report the duckweed growth promoting ability of bacterial strains belonging to the phylum Acidobacteria, the members of which are known to inhabit soils and terrestrial plants, but their ecological roles and plant–microbe interactions remain largely unclear. Two novel Acidobacteria strains, F-183 and TBR-22, were successfully isolated from wild duckweeds and phylogenetically affiliated with subdivision 3 and 6 of the phylum, respectively, based on 16S rRNA gene sequence analysis. In the co-culture experiments with aseptic host plants, the F-183 and TBR-22 strains visibly enhanced growth (frond number) of six duckweed species (subfamily Lemnoideae) up to 1.8–5.1 times and 1.6–3.9 times, respectively, compared with uninoculated controls. Intriguingly, both strains also increased the chlorophyll content of the duckweed (Lemna aequinoctialis) up to 2.4–2.5 times. Under SEM observation, the F-183 and TBR-22 strains were epiphytic and attached to the surface of duckweed. Taken together, our findings suggest that indigenous plant associated Acidobacteria contribute to a healthy growth of their host aquatic plants.
The microbial communities inhabiting the fronds of duckweeds have not been investigated in as much detail as those on the roots. We herein examined the microbial communities in three duckweed species using 16S rRNA amplicon sequencing and compared them to those on the roots. The microbial compositions of the fronds were distinct from those of the roots in the three species. Various types of taxonomic bacteria, including rarely cultivated phyla, Acidobacteria , Armatimonadetes , and Verrucomicrobia , were also isolated from the fronds, but at a slightly lower abundance than those from the roots. These results suggest that duckweed fronds are an alternative source for isolating rare and novel microbes, which may otherwise be recalcitrant to cultivation using conventional strategies.
Background Clinical observations have shown that there is a relationship between coronavirus disease 2019 (COVID-19) and atypical lymphocytes in the peripheral blood; however, knowledge about the time course of the changes in atypical lymphocytes and the association with the clinical course of COVID-19 is limited. Objective Our purposes were to investigate the dynamics of atypical lymphocytes in COVID-19 patients and to estimate their clinical significance for diagnosis and monitoring disease course. Materials and methods We retrospectively identified 98 inpatients in a general ward at Kashiwa Municipal Hospital from May 1st, 2020, to October 31st, 2020. We extracted data on patient demographics, symptoms, comorbidities, blood test results, radiographic findings, treatment after admission and clinical course. We compared clinical findings between patients with and without atypical lymphocytes, investigated the behavior of atypical lymphocytes throughout the clinical course of COVID-19, and determined the relationships among the development of pneumonia, the use of supplemental oxygen and the presence of atypical lymphocytes. Results Patients with atypical lymphocytes had a significantly higher prevalence of pneumonia (80.4% vs. 42.6%, p < 0.0001) and the use of supplemental oxygen (25.5% vs. 4.3%, p = 0.0042). The median time to the appearance of atypical lymphocytes after disease onset was eight days, and atypical lymphocytes were observed in 16/98 (16.3%) patients at the first visit. Atypical lymphocytes appeared after the confirmation of lung infiltrates in 31/41 (75.6%) patients. Of the 13 oxygen-treated patients with atypical lymphocytes, approximately two-thirds had a stable or improved clinical course after the appearance of atypical lymphocytes. Conclusion Atypical lymphocytes frequently appeared in the peripheral blood of COVID-19 patients one week after disease onset. Patients with atypical lymphocytes were more likely to have pneumonia and to need supplemental oxygen; however, two-thirds of them showed clinical improvement after the appearance of atypical lymphocytes.
Phytoplasmas are unculturable plant-pathogenic bacteria causing devastating damage to agricultural production worldwide. Here, we report the draft genome sequence of “Candidatus Phytoplasma asteris” strain OY-V. Most of the known virulence factors and host-interacting proteins were conserved in OY-V. This genome furthers our understanding of genetic diversity and pathogenicity of phytoplasmas.
Plant growth-promoting bacteria (PGPB) can exert beneficial growth effects on their host plants. Little is known about the phylogeny and growth-promoting mechanisms of PGPB associated with aquatic plants, although those of terrestrial PGPB have been well-studied. Here, we report four novel aquatic PGPB strains, MRB1–4 (NITE P-01645–P-01648), for duckweed Lemna minor from our rhizobacterial collection isolated from Lythrum anceps. The number of L. minor fronds during 14 days co-culture with the strains MRB1–4 increased by 2.1–3.8-fold, compared with an uninoculated control; the plant biomass and chlorophyll content in co-cultures also increased. Moreover, all strains possessed an indole-3-acetic acid production trait in common with a plant growth-promoting trait of terrestrial PGPB. Phylogenetic analysis showed that three strains, MRB-1, -3, and -4, were affiliated with known proteobacterial genera (Bradyrhizobium and Pelomonas); this report is the first to describe a plant-growth promoting activity of Pelomonas members. The gammaproteobacterial strain MRB2 was suggested to be phylogenetically novel at the genus level. Under microscopic observation, the Pelomonas strain MRB3 was epiphytic and adhered to both the root surfaces and fronds of duckweed. The duckweed PGPB obtained here could serve as a new model for understanding unforeseen mechanisms behind aquatic plant-microbe interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.