Stem cells are maintained in the niche by intercellular interactions and signaling networks. In this work, we study extracellular signals required for maintenance of the root stem cell niche in higher plants. We identify a family of functionally redundant homologous peptides that are secreted, tyrosine-sulfated, and expressed mainly in the stem cell area and the innermost layer of central columella cells. We name these peptides root meristem growth factors (RGFs). RGFs are required for maintenance of the root stem cell niche and transit amplifying cell proliferation in Arabidopsis. RGF1 defines expression levels and patterns of the stem cell transcription factor PLETHORA, mainly at the posttranscriptional level. The RGFs function independently of the auxin pathway. These peptide signals play a crucial role in postembryonic root development.
RNA helicases are molecular motors that are involved in virtually all aspects of RNA metabolism. Eukaryotic initiation factor (eIF) 4A is the prototypical member of the DEAD-box family of RNA helicases. It is thought to use energy from ATP hydrolysis to unwind mRNA structure and, in conjunction with other translation factors, it prepares mRNA templates for ribosome recruitment during translation initiation. In screening marine extracts for new eukaryotic translation initiation inhibitors, we identified the natural product hippuristanol. We show here that this compound is a selective and potent inhibitor of eIF4A RNA-binding activity that can be used to distinguish between eIF4A-dependent and -independent modes of translation initiation in vitro and in vivo. We also show that poliovirus replication is delayed when infected cells are exposed to hippuristanol. Our study demonstrates the feasibility of selectively targeting members of the DEAD-box helicase family with small-molecule inhibitors.
A peptide hormone, root meristem growth factor (RGF), regulates root meristem development through the PLETHORA (PLT) stem cell transcription factor pathway, but it remains to be uncovered how extracellular RGF signals are transduced to the nucleus. Here we identified, using a combination of a custom-made receptor kinase (RK) expression library and exhaustive photoaffinity labeling, three leucine-rich repeat RKs (LRR-RKs) that directly interact with RGF peptides in Arabidopsis. These three LRR-RKs, which we named RGFR1, RGFR2, and RGFR3, are expressed in root tissues including the proximal meristem, the elongation zone, and the differentiation zone. The triple rgfr mutant was insensitive to externally applied RGF peptide and displayed a short root phenotype accompanied by a considerable decrease in meristematic cell number. In addition, PLT1 and PLT2 protein gradients, observed as a gradual gradient decreasing toward the elongation zone from the stem cell area in wild type, steeply declined at the root tip in the triple mutant. Because RGF peptides have been shown to create a diffusion-based concentration gradient extending from the stem cell area, our results strongly suggest that RGFRs mediate the transformation of an RGF peptide gradient into a PLT protein gradient in the proximal meristem, thereby acting as key regulators of root meristem development.peptide hormone | receptor | plant | stem cell | sulfated peptide
ObjectiveWe examined metabolic and endocrine responses during rest and exercise in moderate hypoxia over a 7.5 h time courses during daytime.MethodsEight sedentary, overweight men (28.6±0.8 kg/m2) completed four experimental trials: a rest trial in normoxia (FiO2 = 20.9%, NOR-Rest), an exercise trial in normoxia (NOR-Ex), a rest trial in hypoxia (FiO2 = 15.0%, HYP-Rest), and an exercise trial in hypoxia (HYP-Ex). Experimental trials were performed from 8:00 to 15:30 in an environmental chamber. Blood and respiratory gas samples were collected over 7.5 h. In the exercise trials, subjects performed 30 min of pedaling exercise at 60% of VO2max at 8:00, 10:30, and 13:00, and rested during the remaining period in each environment. Standard meals were provided at 8:30, 11:00, and 13:30.ResultsThe areas under the curves for blood glucose and serum insulin concentrations over 7.5 h did not differ among the four trials. At baseline, %carbohydrate contribution was significantly higher in the hypoxic trials than in the normoxic trials (P<0.05). Although exercise promoted carbohydrate oxidation in the NOR-Ex and HYP-Ex trials, %carbohydrate contribution during each exercise and post-exercise period were significantly higher in the HYP-Ex trial than in the NOR-Ex trial (P<0.05).ConclusionThree sessions of 30 min exercise (60% of VO2max) in moderate hypoxia over 7.5 h did not attenuate postprandial glucose and insulin responses in young, overweight men. However, carbohydrate oxidation was significantly enhanced when the exercise was conducted in moderate hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.