Purpose The purpose of this study was to compare the effects of acupuncture and acupressure of acupoints on tendon blood circulation with those of both types of stimulation of tendon itself. Methods Before, during (except for acupressure), and after acupuncture and acupressure of the tendon and acupoint, blood circulation of the Achilles tendon was measured using red laser lights. Results The blood volume of the treated and non-treated tendons increased after acupuncture of the tendon (effect of time p = 0.030), whereas that tended to increase after acupuncture of the acupoint (effect of time p = 0.063). In addition, no significant difference in the increases in blood volume was found among the four conditions, i.e., after acupuncture stimulation of the tendon and acupoint for the treated and non-treated tendons (p = 0.492). The blood volume of the treated tendon significantly increased after acupressure of the tendon (effect of time p < 0.001), but not of the acupoint (effect of time p = 0.260), whereas that of the non-treated tendon did not change after acupressure of both the tendon and acupoint. Conclusion These results suggested that acupuncture of the tendon and acupoint acted centrally to enhance blood circulation of both the treated and non-treated tendons during the recovery period, whereas acupressure of the tendon locally increased blood circulation of the treated tendon only, but not the non-treated tendon and both the treated and non-treated tendons after acupressure of acupoint.
The present study aimed to examine the effects of muscle‐tendon mechanical properties and electromyographic activity on joint stiffness and jumping height and to explore the determinants of joint stiffness and jumping height. Twenty‐nine males performed unilateral drop jumps at three drop heights (10, 20, and 30 cm) using only the ankle joint on the sledge apparatus. Ankle joint stiffness, jumping height, and electromyographic activity of the plantar flexor muscles were measured during drop jumps. Active muscle stiffness of the medial gastrocnemius muscle was calculated according to changes in the estimated muscle force and fascicle length during fast stretching at five different angular velocities (100, 200, 300, 500, and 600 deg s−1) after submaximal isometric contractions. Tendon stiffness and elastic energy were measured during ramp and ballistic contractions. Active muscle stiffness was significantly correlated with joint stiffness, except for a few conditions. Tendon stiffness measured during ramp and ballistic contractions was not significantly correlated with joint stiffness. The ratios of electromyographic activity before landing and during the eccentric phase to that during the concentric phase were significantly correlated with joint stiffness. In addition, jumping heights at 10 and 20 cm (except for 30 cm) drop heights were strongly associated with the tendon elastic energy, whereas no other measured variables showed significant correlations with jumping heights. These results suggested that (1) joint stiffness is determined by active muscle stiffness and electromyographic activity patterns during jumping, and (2) jumping height is determined by tendon elastic energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.