Specific patterns of neuronal firing induce changes in synaptic strength that may contribute to learning and memory. If the postsynaptic NMDA (N-methyl-D-aspartate) receptors are blocked, long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and the learning of spatial information are prevented. The NMDA receptor can bind a protein known as postsynaptic density-95 (PSD-95), which may regulate the localization of and/or signalling by the receptor. In mutant mice lacking PSD-95, the frequency function of NMDA-dependent LTP and LTD is shifted to produce strikingly enhanced LTP at different frequencies of synaptic stimulation. In keeping with neural-network models that incorporate bidirectional learning rules, this frequency shift is accompanied by severely impaired spatial learning. Synaptic NMDA-receptor currents, subunit expression, localization and synaptic morphology are all unaffected in the mutant mice. PSD-95 thus appears to be important in coupling the NMDA receptor to pathways that control bidirectional synaptic plasticity and learning.
At excitatory synapses, the postsynaptic scaffolding protein postsynaptic density 95 (PSD-95) couples NMDA receptors (NMDARs) to the Ras GTPase-activating protein SynGAP. The close association of SynGAP and NMDARs suggests that SynGAP may have an important role in NMDAR-dependent activation of Ras signaling pathways, such as the MAP kinase pathway, and in synaptic plasticity. To explore this issue, we examined long-term potentiation (LTP), p42 MAPK (ERK2) signaling, and spatial learning in mice with a heterozygous null mutation of the SynGAP gene (SynGAP(-/+)). In SynGAP(-/+) mutant mice, the induction of LTP in the hippocampal CA1 region was strongly reduced in the absence of any detectable alteration in basal synaptic transmission and NMDAR-mediated synaptic currents. Although basal levels of activated ERK2 were elevated in hippocampal extracts from SynGAP(-/+) mice, NMDAR stimulation still induced a robust increase in ERK activation in slices from SynGAP(-/+) mice. Thus, although SynGAP may regulate the ERK pathway, its role in LTP most likely involves additional downstream targets. Consistent with this, the amount of potentiation induced by stimulation protocols that induce an ERK-independent form of LTP were also significantly reduced in slices from SynGAP(-/+) mice. An elevation of basal phospho-ERK2 levels and LTP deficits were also observed in SynGAP(-/+)/H-Ras(-)/- double mutants, suggesting that SynGAP may normally regulate Ras isoforms other than H-Ras. A comparison of SynGAP and PSD-95 mutants suggests that PSD-95 couples NMDARs to multiple downstream signaling pathways with very different roles in LTP and learning.
Using Down syndrome as a model for complex trait analysis, we sought to identify loci from chromosome 21q22.2 which, when present in an extra dose, contribute to learning abnormalities. We generated low-copy-number transgenic mice, containing four different yeast artificial chromosomes (YACs) that together cover approximately 2 megabases (Mb) of contiguous DNA from 21q22.2. We subjected independent lines derived from each of these YAC transgenes to a series of behavioural and learning assays. Two of the four YACs caused defects in learning and memory in the transgenic animals, while the other two YACs had no effect. The most severe defects were caused by a 570-kb YAC; the interval responsible for these defects was narrowed to a 180-kb critical region as a consequence of YAC fragmentation. This region contains the human homologue of a Drosophila gene, minibrain, and strongly implicates it in learning defects associated with Down syndrome.
Long-term potentiation (LTP), a persistent enhancement of synaptic transmission that may be involved in some forms of learning and memory, is induced at excitatory synapses in the CA1 region of the hippocampus by coincident presynaptic and postsynaptic activity. Although action potentials back-propagating into dendrites of hippocampal pyramidal cells provide sufficient postsynaptic activity to induce LTP under some in vitro conditions, it is not known whether LTP can be induced by patterns of postsynaptic action potential firing that occur in these cells in vivo. Here we report that a characteristic in vivo pattern of action potential generation in CA1 pyramidal cells known as the complex spike burst enables the induction of LTP during theta frequency synaptic stimulation in the CA1 region of hippocampal slices maintained in vitro. Our results suggest that complex spike bursting may have an important role in synaptic processes involved in learning and memory formation, perhaps by producing a highly sensitive postsynaptic state during which even low frequencies of presynaptic activity can induce LTP.
Inhibitors of both phosphatidylinositol-3-kinase (PI3-kinase) and MAPK/ERK (mitogen-activate protein kinase/extracellular signal-related kinase) activation inhibit NMDA receptor-dependent long-term potentiation (LTP). PI3-kinase inhibitors also block activation of ERK by NMDA receptor stimulation, suggesting that PI3-kinase inhibitors block LTP because PI3-kinase is an essential upstream regulator of ERK activation. To examine this hypothesis, we investigated the effects of PI3-kinase inhibitors on ERK activation and LTP induction in the CA1 region of mouse hippocampal slices. Consistent with the notion that ERK activation by NMDA receptor stimulation is PI3-kinase dependent, the PI3-kinase inhibitor wortmannin partially inhibited ERK2 activation induced by bath application of NMDA and strongly suppressed ERK2 activation by high-frequency synaptic stimulation. PI3-kinase and MEK (MAP kinase kinase) inhibitors had very different effects on LTP, however. Both types of inhibitors suppressed LTP induced by theta-frequency trains of synaptic stimulation, but only PI3-kinase inhibitors suppressed the induction of LTP by high-frequency stimulation or low-frequency stimulation paired with postsynaptic depolarization. Concentrations of PI3-kinase inhibitors that inhibited LTP when present during high-frequency stimulation had no effect on potentiated synapses when applied after high-frequency stimulation, suggesting that PI3-kinase is specifically involved in the induction of LTP. Finally, we found that LTP induced by theta-frequency stimulation was MEK inhibitor insensitive but still PI3-kinase dependent in hippocampal slices from PSD-95 (postsynaptic density-95) mutant mice. Together, our results indicate that the role of PI3-kinase in LTP is not limited to its role as an upstream regulator of MAPK signaling but also includes signaling through ERK-independent pathways that regulate LTP induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.