Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.
Because the killer cell Ig-like receptors (KIRs) have only been characterized in humans and chimpanzees, we do not have a full understanding of their evolutionary history. Therefore, cDNAs encoding the KIR molecules of five rhesus monkeys were characterized, and were found to differ from the KIR molecules identified in humans and chimpanzees. Whereas only one KIR2DL4 molecule is detected in humans and chimpanzees, two distinct KIR2DL4 homologues were identified in the monkeys. Although the two human KIR3DL molecules are limited in their polymorphism, the KIR3DL homologues in the monkeys were highly polymorphic. Up to five KIR3DL homologues were identified in each monkey that was studied, and eleven distinct KIR3DL molecules were detected in the five rhesus monkeys. Two novel families of KIR molecules were identified in the rhesus monkeys, KIR3DH and KIR1D. The KIR3DH molecules have three Ig domains, transmembrane domains homologous to KIR2DL4 molecules that contain an arginine, and short cytoplasmic domains. With these features, the KIR3DH molecules resemble the activating forms of the human KIR molecules. The KIR1D molecule encodes only one complete Ig domain before a frame-shift in the second Ig domain occurs, leading to early termination of the molecule. Multiple splice variants of KIR1D exist that encode at least one Ig domain, as well as transmembrane and cytoplasmic domains. The extensive diversity of the rhesus monkey KIR3DL homologues and the novel KIR3DH and KIR1D molecules suggests that the KIR family of molecules has evolved rapidly during the evolution of primates.
Plasmid DNA vaccines elicit potent and protective immune responses in numerous small-animal models of infectious diseases. However, their immunogenicity in primates appears less potent. Here we investigate a novel approach that optimizes regulatory elements in the plasmid backbone to improve the immunogenicity of DNA vaccines. Among various regions analyzed, we found that the addition of a regulatory sequence from the R region of the long terminal repeat from human T-cell leukemia virus type 1 (HTLV-1) to the cytomegalovirus (CMV) enhancer/promoter increased transgene expression 5-to 10-fold and improved cellular immune responses to human immunodeficiency virus type 1 (HIV-1) antigens. In cynomolgus monkeys, DNA vaccines containing the CMV enhancer/promoter with the HTLV-1 R region (CMV/R) induced markedly higher cellular immune responses to HIV-1 Env from clades A, B, and C and to HIV-1 Gag-Pol-Nef compared with the parental DNA vaccines. These data demonstrate that optimization of specific regulatory elements can substantially improve the immunogenicity of DNA vaccines encoding multiple antigens in small animals and in nonhuman primates. This strategy could therefore be explored as a potential method to enhance DNA vaccine immunogenicity in humans.Plasmid DNA vaccines have shown promise as a novel vaccination modality based on their simplicity and versatility (31,32,36). In particular, DNA vaccines can elicit potent and protective cellular and humoral immune responses in a variety of small-animal models (10). However, they have proven substantially less immunogenic in nonhuman primate studies and in clinical trials to date (8,19,33).Several approaches have been explored to improve the immunogenicity of DNA vaccines. Our laboratories and others have demonstrated that the addition of plasmids expressing cytokines and immunomodulatory molecules can substantially augment DNA vaccine-elicited immune responses in both mice and nonhuman primates (3,4,15,16,21,34,37). However, the practical requirements of manufacturing and establishing the safety of the plasmid cytokines prior to the initiation of clinical trials may prove a limitation of this strategy (7, 26). Other approaches involve the addition of polymer adjuvants (29) and the use of in vivo electroporation techniques (24, 35). These strategies have similarly proven effective in animal models, but their practical utility in clinical trials has yet to be demonstrated.In this study, we investigate a novel strategy involving optimization of regulatory elements in the backbone of the plasmid DNA vaccine. DNA vaccines often utilize a cytomegalovirus (CMV) enhancer, promoter, and intron to drive high-level expression of a transgene in mammalian cells (32,38). Here, we explore the effects of adding the regulatory R region from the 5Ј long terminal repeat (LTR) of human T-cell leukemia virus type 1 (HTLV-1), which acts as a transcriptional and posttranscriptional enhancer (30). We find that these CMV/R DNA vaccines elicit substantially higher human immunodeficiency viru...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.