The oral cavity in healthy subjects has a well-balanced microbiota that consists of more than 700 species. However, a disturbance of this balance, with an increase of harmful microbes and a decrease of beneficial microbes, causes oral disorders such as periodontal disease or dental caries. Nowadays, probiotics are expected to confer oral health benefits by modulating the oral microbiota. This study screened new probiotic candidates with potential oral health benefits and no harmful effects on the oral cavity. We screened 14 lactobacillus strains and 36 streptococcus strains out of 896 oral isolates derived from healthy subjects. These bacteria did not produce volatile sulfur compounds or water-insoluble glucan, had higher antibacterial activity against periodontal bacteria, and had higher adherence activity to oral epithelial cells or salivary-coated hydroxyapatite in vitro. We then evaluated the risk of primary cariogenicity and infective endocarditis of the selected oral isolates. As a result, Lactobacillus crispatus YIT 12319, Lactobacillus fermentum YIT 12320, Lactobacillus gasseri YIT 12321, and Streptococcus mitis YIT 12322 were selected because they showed no cariogenic potential in an artificial mouth system and a lower risk of experimental infective endocarditis in a rat model. These candidates are expected as new probiotics with potential oral health benefits and no adverse effects on general health.
BackgroundPeriodontal screening plays an important role in the prevention of periodontal disease and promotes an improvement in oral health-related quality of life. The World Health Organization’s Community Periodontal Index should be carried out by well-trained dentists. However, the Community Periodontal Index is an invasive technique, and if used for periodontal screening, increases the cost of evaluation. In order to overcome these issues, we developed saliva tests for periodontal screening. The purpose of this study was to calculate the sensitivity and specificity of our method for measuring hemoglobin and lactate dehydrogenase levels in saliva.MethodsInclusion criteria were adults aged over 20 years with at least 20 teeth remaining. The study population comprised 38 men and 54 women with a mean age of 50.03 years. Oral examinations were carried out by dentists, and the number of remaining teeth, presence or absence of calculus, bleeding on probing and pocket depth were recorded. In this study, periodontitis was defined according to the criteria of the Center for Disease Control and Prevention in partnership with the American Academy of Periodontology. In order to examine hemoglobin and lactate dehydrogenase levels in saliva, participants were instructed to chew on a standard-sized tasteless and odorless gum base for 5 min, during which time, stimulated whole saliva was continuously collected.ResultsThe sensitivity and specificity for hemoglobin levels were 0.759 and 0.763, respectively, and 0.722 and 0.711, respectively, for lactate dehydrogenase levels. Combining these two tests, when samples tested positive for both hemoglobin and lactate dehydrogenase, the positive predictive value was 91.7 %.ConclusionMeasuring hemoglobin and lactate dehydrogenase levels in saliva is a less invasive method than the Community Periodontal Index. Therefore, our saliva tests may be a viable alternative to the Community Periodontal Index for periodontal screening.
The purpose of this study was to evaluate the inhibition of biofilm formation on newly developed coating materials with self-cleaning properties. A series of experimental coating materials containing fluoroalkylated acrylic acid oligomer (FAAO) were applied to resin composite substrates. The surfaces of the coating materials were analyzed by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Biofilm formation on the surface was assessed using Streptococcus mutans biofilms inside an oral simulator in vitro. The results indicated that an increase in the concentration of FAAO in the coating materials enhanced surface hydrophilicity and oil-repellency. Biofilm assays demonstrated that the amount of biofilm retained on the coating materials gradually decreased when the concentration of FAAO increased in the materials. It was concluded that the coating materials incorporated with FAAO possessed self-cleaning properties and displayed signs of inhibiting biofilm formation on their surfaces.
Background: The association between dental status and mortality in community-dwelling older adults has been documented by several studies. The aim of this study was to analyze the contribution of self-assessed chewing ability, number of remaining teeth and serum albumin levels to mortality and the interactions between the three factors. Methods: A 20-year follow-up study was conducted with 666 subjects aged 80 years (from 1996 to 2017) who resided in the 8 areas served by one health center in Iwate Prefecture. Health checkups including physical fitness measurements were conducted at a meeting place or gymnasium. Medical interview and blood sampling were conducted by physician. Oral examination was examined by dentist. The number of remaining teeth, serum albumin levels, and self-assessed chewing ability were used as predictors of mortality. Results: Among the 608 subjects (233 men and 375 women) included in this study, only 12 subjects (1.97%) survived after 20 years of follow-up. For men, dental status and serum levels of albumin were significantly associated with mortality. The hazard ratios of self-assessed chewing ability calculated by item response theory analysis and the inability to chew at least one food adjusted for serum albumin and tooth conditions were statistically significant in men. When adjusted by health status evaluated by blood tests, self-assessed chewing ability was statistically significant in men. According to path analysis, self-assessed chewing ability and serum albumin independently affected mortality in men. Conclusion: Masticatory dysfunction may be an important risk factor for mortality in men, even though it was selfassessed. Retaining chewing ability might be a useful predictor of longevity in older male adults.
Protein-resistant coatings have been studied for inhibiting biofilm formation on implant devices. In this study, titanium (Ti) surfaces were biofunctionalized with poly(ethylene glycol) (PEG) by electrodeposition and were evaluated as biofilm substrates under an oral simulated environment. Streptococcus gordonii, an early colonizer of oral biofilms, was inoculated on Ti and PEG-electrodeposited Ti (PEG-Ti) surfaces and was analyzed quantitatively and topographically. Streptococcus mutans supplemented with sucrose, a late colonizer mainly found in dental plaque, was also used to form biofilms on the surfaces of Ti and PEG-Ti for 20 h followed by sonication as a means of detaching the biofilms. The results indicated that the attachment of S. gordonii on PEG-Ti surfaces was inhibited compared with Ti, and the S. mutans biofilm was easier to be detached from the surface of PEG-Ti than that of Ti. Moreover, the presence of PEG electrodeposited on Ti surface inhibited salivary protein adsorption. The degree of detachment of biofilms from PEG-Ti was associated with the inhibition of the salivary protein adsorption, suggesting weak basal attachment of the biofilms to the electrodeposited surfaces. Therefore, controlling protein adsorption at the initial stage of biofilm formation may be an effective strategy to protect metal surfaces from bacterial contamination not only in dental manipulations but also in orthopedic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.