The sequence determination of the entire genome of the Synechocystis sp. strain PCC6803 was completed. The total length of the genome finally confirmed was 3,573,470 bp, including the previously reported sequence of 1,003,450 bp from map position 64% to 92% of the genome. The entire sequence was assembled from the sequences of the physical map-based contigs of cosmid clones and of lambda clones and long PCR products which were used for gap-filling. The accuracy of the sequence was guaranteed by analysis of both strands of DNA through the entire genome. The authenticity of the assembled sequence was supported by restriction analysis of long PCR products, which were directly amplified from the genomic DNA using the assembled sequence data. To predict the potential protein-coding regions, analysis of open reading frames (ORFs), analysis by the GeneMark program and similarity search to databases were performed. As a result, a total of 3,168 potential protein genes were assigned on the genome, in which 145 (4.6%) were identical to reported genes and 1,257 (39.6%) and 340 (10.8%) showed similarity to reported and hypothetical genes, respectively. The remaining 1,426 (45.0%) had no apparent similarity to any genes in databases. Among the potential protein genes assigned, 128 were related to the genes participating in photosynthetic reactions. The sum of the sequences coding for potential protein genes occupies 87% of the genome length. By adding rRNA and tRNA genes, therefore, the genome has a very compact arrangement of protein- and RNA-coding regions. A notable feature on the gene organization of the genome was that 99 ORFs, which showed similarity to transposase genes and could be classified into 6 groups, were found spread all over the genome, and at least 26 of them appeared to remain intact. The result implies that rearrangement of the genome occurred frequently during and after establishment of this species.
The oxygen-evolving complex (OEC) forms the heart of photosystem II (PSII) in photosynthesis. The crystal structure of PSII from Thermosynechococcus vulcanus has been reported at a resolution of 1.9 Å and at an averaged X-ray dose of 0.43 MGy. The OEC structure is suggested to be partially reduced to Mn(II) by EXAFS and DFT computational studies. Recently, the "radiation-damage-free" structures have been published at 1.95 Å resolution using XFEL, but reports continued to appear that the OEC is reduced to the S-state of the Kok cycle. To elucidate much more precise structure of the OEC, in this study two structures were determined at extremely low X-ray doses of 0.03 and 0.12 MGy using conventional synchrotron radiation source. The results indicated that the X-ray reduction effects on the OEC were very small in the low dose region below 0.12 MGy, that is, a threshold existed for the OEC structural changes caused by X-ray exposure. The OEC structures of the two identical monomers in the crystal were clearly different under the threshold of the radiation dose, although the surrounding polypeptide frameworks of PSII were the same. The assumption that the OECs in the crystal were in the dark-stable S-state of the Kok cycle should be re-evaluated.
We established a protocol for the prediction of the coding sequences of unidentified human genes based on the double selection and sequence analysis of cDNA clones with inserts carrying unreported 5'-terminal sequences and with insert sizes corresponding to nearly full-length transcripts. By applying the protocol, cDNA clones with inserts longer than 2 kb were isolated from a cDNA library of human immature myeloid cell line KG-1, and the coding sequences of 40 new genes were predicted. A computer search of the sequences indicated that 20 genes contained sequences similar to known genes in the GenBank/EMBL databases. The sequences of the remaining 20 genes were entirely new, and characteristic protein motifs or domains were identified in 32 genes. Other sequence features noted were that the coding sequences of 23 genes were followed by relatively long stretches of 3'-untranslated sequences and that 5 genes contained repetitive sequences in their 3'-untranslated regions. The chromosomal location of these genes has been determined. By increasing the scale of the above analysis, the coding sequences of many unidentified genes can be predicted.
Selenoprotein P is an extracellular protein containing presumably 10 selenocysteines that are encoded by the UGA stop codon in the open reading frame of the mRNA. The function of selenoprotein P is currently unknown, although several indirect lines of evidence suggest that selenoprotein P is a free radical scavenger. We first developed a conventional procedure to isolate selenoprotein P from human plasma. Next, we investigated the reactivities of selenoprotein P against various hydroperoxides in the presence of glutathione. Although selenoprotein P reduces neither hydrogen peroxide nor tertiary butyl hydroperoxide, it does reduce phospholipid hydroperoxide such as 1-palmitoyl-2-(13-hydroperoxy-cis-9,trans-11-octadecadienoyl)-3-phosphatidylcholine hydroperoxide. Kinetic analysis demonstrated a tert-uni ping-pong mechanism, similar to those described for classical glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase. Not only glutathione, but also dithiothreitol, mercaptoethanol, cysteine, and homocysteine, were effective as reducing substances, as in the case of phospholipid hydroperoxide glutathione peroxidase. These results show that selenoprotein P functions as a phospholipid hydroperoxide glutathione peroxidase in extracellular fluids.
The contiguous sequence of 1,003,450 bp spanning map positions 64% to 92% of the genome of Synechocystis sp. strain PCC6803 has been deduced. Computer analysis of the sequence predicts that this region contains at least 818 potential ORFs, in which 255 (31%) were either genes that had already been identified or their homologues, 84 (10%) were homologues to registered hypothetical genes, and 149 (18%) showed weak similarities to reported genes. The remaining 330 ORFs showed no apparent similarity to any reported genes or carried no significant protein motifs. The potential ORFs as a whole occupied 86% of the sequenced region, implying compact arrangement of genes in the genome. As to the structural RNA genes, one rRNA operon consisting of 5,028 bp and at least 11 species of tRNA genes were identified. It is noteworthy that 10 out of the 11 tRNA species showed significant sequence similarities to tRNAs reported in plant chloroplasts. As other notable unique sequences, three classes of IS-like elements each with characteristics typical of IS elements were identified, and a typical unit of WD(Trp-Asp)-repeats which have only been detected in the regulatory proteins of eukaryotes was identified within the large 5,079-bp ORF located at map position 69%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.