Background: Scratch injury induces Koebner phenomenon in psoriasis. Smoking is also a risk factor for psoriasis. Keratinocytes can produce various psoriasis-related molecules including TNF,
Psoriasis is a systemic inflammatory disease significantly associated with comorbidities including type 2 diabetes mellitus (T2DM). Metformin is utilized as a first-line agent for treating T2DM. Although metformin reportedly inhibits mature IL-1β secretion via NLRP3 inflammasome in macrophages of T2DM patients, it remains unclear whether it affects skin inflammation in psoriasis. To test this, we analysed normal human epidermal keratinocytes (NHEKs), a major skin component, stimulated with the key mediators of psoriasis development, TNF-α and IL-17A. This stimulation induced the upregulation of pro-IL-1β mRNA and protein levels, and subsequently mature IL-1β secretion, which was inhibited by metformin treatment. To further reveal the mechanism involved, we examined how metformin treatment affected NLRP3 inflammasome activated by TNF-α and IL-17A stimulation. We found that this treatment downregulated caspase-1 expression, a key mediator of NLRP3 inflammasome. Furthermore, inhibitors of AMPK and SIRT1 abrogated the downregulation of caspase-1 induced by metformin treatment, indicating that AMPK and SIRT1 are essential for the inhibitory effect on NLRP3 inflammasome in NHEKs. As IL-1β stimulation induced upregulation of IL-36γ, CXCL1, CXCL2, CCL20, S100A7, S100A8 and S100A9 mRNA and protein levels in NHEKs, we examined whether metformin treatment affects such gene expression. Metformin treatment inhibited upregulation of IL-36γ, CXCL1, CXCL2, CCL20, S100A7, S100A8 and S100A9 mRNA and protein levels induced by TNF-α and IL-17A stimulation. Finally, we examined whether metformin administration affected psoriasis development in an imiquimod-induced mouse psoriasis model. Oral metformin treatment significantly decreased ear thickness, epidermal hyperplasia and inflammatory cell infiltration. A cytokine profile in the epidermis under metformin treatment showed that IL-1β, Cxcl1, Cxcl2, S100a7, S100a8 and S100A9 mRNA levels were downregulated compared with control levels. These results indicate that metformin administration prevented psoriasis development in vivo. Collectively, our findings suggest that metformin-mediated anti-psoriatic effects on the skin have the potential for treating psoriasis in T2DM patients.
Skin barrier dysfunction, including reduced filaggrin (FLG) and loricrin (LOR) expression, plays a critical role in atopic dermatitis (AD) development. Since aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, mediates keratinocyte differentiation, it is a potential target for AD treatment. Recently, clinical studies have shown that tapinarof, an AHR modulator, attenuated the development of AD. To examine the molecular mechanism involved in this, we analyzed tapinarof-treated normal human epidermal keratinocytes (NHEKs). Tapinarof upregulated FLG and LOR mRNA and protein expression in an AHR-dependent manner. Tapinarof also induced the secretion of IL-24, a cytokine that activates Janus kinase (JAK)-signal transducer and activator of transcription (STAT), leading to the downregulation of FLG and LOR expression. Knockdown of either IL-24 or STAT3 expression by small interfering RNA (siRNA) transfection augmented the upregulation of FLG and LOR expression induced by tapinarof, suggesting that inhibition of the IL-24/STAT3 axis during AHR activation supports the improvement of skin barrier dysfunction. Furthermore, tapinarof alone could restore the downregulation of FLG and LOR expression induced by IL-4, a key cytokine of AD, and its combination with JAK inhibitors enhanced this effect. These findings provide a new strategy for treating AD using AHR modulators and JAK inhibitors.
The production of red blood cells, termed erythropoiesis, occurs in two waves in the developing mouse embryo: first primitive erythropoiesis followed by definitive erythropoiesis. In the mouse embryo, both primitive and definitive erythropoiesis originates in the extra-embryonic yolk sac. The definitive wave then migrates to the fetal liver, fetal spleen and fetal bone marrow as these organs form. The fetal liver serves as the major organ for hematopoietic cell expansion and erythroid maturation after mid-gestation. The erythropoietic niche, which expresses critical cytokines such as stem cell factor (SCF), thrombopoietin (TPO) and the insulin-like growth factors IGF1 and IGF2, supports hematopoietic expansion in the fetal liver. Previously, our group demonstrated that DLK1+ hepatoblasts support fetal liver hematopoiesis through erythropoietin and SCF release as well as extracellular matrix deposition. Loss of DLK1+ hepatoblasts in Map2k4−/− mouse embryos resulted in decreased numbers of hematopoietic cells in fetal liver. Genes encoding proteinases and peptidases were found to be highly expressed in DLK1+ hepatoblasts. Capitalizing on this knowledge, and working on the assumption that these proteinases and peptidases are generating small, potentially biologically active peptides, we assessed a range of peptides for their ability to support erythropoiesis in vitro. We identified KS-13 (PCT/JP2010/067011) as an erythropoietic peptide-a peptide which enhances the production of red blood cells from progenitor cells. Here, we discuss the elements regulating embryonic erythropoiesis with special attention to niche cells, and demonstrate how this knowledge can be applied in the identification of niche-derived peptides with potential therapeutic capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.