harbors C-terminal sequence variants (G1 and G2), which account for much of the increased risk for kidney disease in sub-Saharan African ancestry populations. Expression of the risk variants has also been shown to cause injury to podocytes and other cell types, but the underlying mechanisms are not understood. We used and to help clarify these mechanisms. Ubiquitous expression of the human APOL1 G1 and G2 disease risk alleles caused near-complete lethality in , with no effect of the G0 nonrisk allele, corresponding to the pattern of human disease risk. We also observed a congruent pattern of cellular damage with tissue-specific expression of APOL1. In particular, expression of APOL1 risk variants in nephrocytes caused cell-autonomous accumulation of the endocytic tracer atrial natriuretic factor-red fluorescent protein at early stages and nephrocyte loss at later stages. We also observed differential toxicity of the risk variants compared with the nonrisk variants in, including impairment of vacuole acidification. Yeast strains defective in endosomal trafficking or organelle acidification but not those defective in autophagy displayed augmented APOL1 toxicity with all isoforms. This pattern of differential injury by the APOL1 risk alleles compared with the nonrisk alleles across evolutionarily divergent species is consistent with an impairment of conserved core intracellular endosomal trafficking processes. This finding should facilitate the identification of cell injury pathways and corresponding therapeutic targets of interest in these amenable experimental platforms.
Lissencephaly comprises a heterogeneous group of developmental brain disorders of varying severity, involving abnormal cortical gyration. We studied a highly consanguineous Israeli Moslem family with a lethal form of autosomal recessive lissencephaly with cerebellar hypoplasia (LCH). Using microarray-based homozygosity mapping in the reported family, combined with whole exome sequencing in one affected infant, we identified a homozygous splice site mutation g.IVS8+1G>A in cyclin-dependent kinase 5 (CDK5), causing complete skipping of exon 8, and leading to a frame shift and premature stop codon (p.V162SfsX19). The mutation co-segregated with the disease phenotype in all 29 study participants (4 patients and 25 healthy relatives), and was not identified in 200 ethnically matched control chromosomes. The p.V162SfsX19 mutation causes lack of endogenous CDK5 expression in affected dermal fibroblasts and brain tissue at the mRNA and protein levels, consistent with nonsense-mediated mRNA decay. Functional analysis of the p.V162SfsX19 mutation, using a yeast complementation assay, showed loss-of-function of the mutant CDK5 gene product, thereby implicating its role in the pathogenesis of autosomal recessive LCH in the studied family.
Summary To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1‐ and G1/S‐specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal‐specific genes is dampened under certain conditions in the Canrm1−/− mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.
Cyclin-dependent kinases (CDKs) are key regulators of eukaryotic cell cycle progression. The cyclin subunit activates the CDK and also imparts to the complex, at least in some cases, substrate specificity. Saccharomyces cerevisiae, an organism in which the roles of individual cyclins are best studied, contains nine cyclins (three G 1 cyclins and six B-type cyclins) capable of activating the main cell cycle CDK, Cdc28. Analysis of the genome of the pathogenic yeast Candida albicans revealed only two sequences corresponding to B-type cyclins, C. albicans Clb2 (CaClb2) and CaClb4. Notably, no homolog of the S. cerevisiae S-phase-specific cyclins, Clb5/ Clb6, could be detected. Here, we performed an in vitro analysis of the activity of CaClb2 and CaClb4 and of three G 1 cyclins, as well as an analysis of the phenotype of S. cerevisiae cells expressing CaClb2 or CaClb4 instead of Clb5. Remarkably, replacement of CLB5 by CaCLB4 caused rapid diploidization of S. cerevisiae. In addition, both in vivo and in vitro analyses indicate that, in spite of the higher sequence similarity of CaClb2 to Clb5/Clb6, CaClb4 is the functional homolog of Clb5/Clb6. The activity of a CaClb2/CaClb4 cyclin hybrid suggests that the cyclin box domain of CaClb4 carries the functional specificity of the protein. These results have implications for our understanding of the evolution of specificity of the cell cycle cyclins.Cyclin-dependent kinases (CDKs) regulate many cellular processes but are best known for their role in the promotion of cell cycle progression. CDK activity depends on the binding of activatory subunits, the cyclins, which periodically appear during the cell cycle. Saccharomyces cerevisiae contains a single essential cell cycle CDK, S. cerevisiae Cdc28 (ScCdc28)/Cdk1, which in turn can be activated by nine cyclins: three G 1 -type cyclins (Cln1, Cln2, and Cln3) and six B-type cyclins (S. cerevisiae Clb1 [ScCbl1] to ScCbl6) (34). Cln3 together with Cln1 and Cln2 (Cln1/2) induces a large class of cell cycle-regulated genes, including genes involved in S-phase initiation, such as the B-cyclins Clb5 and Clb6 (Clb5/6) (44, 47). Clb3 and Clb4 are expressed from early S phase to anaphase (22) and play a role in spindle orientation (Clb4) (31) and morphogenesis (Clb3 and Clb4) (25,37), and Clb1 and Clb2 are expressed in G 2 (22) and play a role in entry into anaphase and spindle elongation (18). Genetic analysis suggests that the genes CLB1 to CLB4 have overlapping functions, as deletions of all four is lethal, but a mutant with deletion of all but CLB2 is still viable (18). Deletion of both CLB5 and CLB6 or of CLB5 alone is not lethal but results in a delay in S-phase initiation (41).The diverged yeast Schizosaccharomyces pombe contains one G 1 cyclin and three B-type cyclins. Studies indicating that a single S. pombe B-type cyclin,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.