We have investigated GaAs-based p-i-n quantum dot solar cells (QDSCs) with 10 up to 20 stacked layers of self-assembled InAs quantum dots (QDs) grown by atomic hydrogen-assisted molecular beam epitaxy. The net average lattice strain was minimized by using the strain-compensation technique, in which GaNAs dilute nitrides were used as spacer layers. The filtered short-circuit current density beyond GaAs bandedge was 2.47 mA/cm2 for strain-compensated QDSC with 20 stacks of InAs QD layers, which was four times higher than that for strained QDSC with identical cell structure.
We have fabricated and compared the performance of GaAs-based p-i-n quantum dot solar cells with ten multilayer stacked structures of self-assembled InAs quantum dots embedded with GaNxAs1−x strain-compensating spacer layers. Reducing the thickness of the spacer layer, and hence increasing the nitrogen composition in GaNxAs1−x, from 40 nm (x=0.5%) to 15 nm (x=1.5%) thereby fulfilling the net strain-balanced condition, resulted in a steady increase in the short-circuit density, while a decreasing trend for the open-circuit voltage was observed. The observed results can be interpreted in terms of the difference in the quantum confinement structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.