Spiking neural networks (SNNs) have become an attractive alternative to conventional artificial neural networks (ANN) due to their temporal information processing capability, energy efficiency, and high biological plausibility. Yet, their computational and memory costs still restrict them from being widely deployed on portable devices. The quantization of SNNs, which converts the full-precision synaptic weights into low-bit versions, emerged as one of the solutions. The development of quantization techniques is far more advanced in the ANN domain compared to the SNN domain. In this work, we utilize the concept of one of the promising ANN quantization methods called Learned Step Size Quantization (LSQ) to adapt to SNN. Furthermore, we extend the mentioned technique for binary quantization of SNNs. Our analysis shows that the proposed method for SNN quantization yields a negligible drop in accuracy and a significant reduction in the needed memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.