Aquatic photosynthetic organisms such as the green alga Chlamydomonas reinhardtii respond to low-CO(2) conditions by inducing a CO(2) concentrating mechanism (CCM). Important components of the CCM are the carbonic anhydrases (CAs), zinc metalloenzymes that catalyze the interconversion of CO(2) and HCO(-)(3). Six CAs have previously been identified in C. reinhardtii. Here, we identify and characterize two additional beta-type CAs. These two CAs are closely related beta-type CAs and have been designated as CAH7 and CAH8. Conceptual translation shows that CAH7 and CAH8 encode proteins of 399 and 333 amino acids, respectively, and they contain targeting sequences. An unusual characteristic of these two CAs is that they have carboxy-terminal extensions containing a hydrophobic sequence. Both these CAs are constitutively expressed at the transcript and protein level. The CAH7 and CAH8 open reading frames were cloned in the overexpression vector pMal-c2x and expressed as recombinant proteins. Activity assays showed that CAH7 and CAH8 are both active CAs. Antibodies were raised against both CAH7 and CAH8, and immunolocalization studies showed that CAH8 was localized in the periplasmic space. A possible role for CAH8 in the inorganic carbon acquisition by C. reinhardtii is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.