SummaryMagnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3O4). The size and morphology of the nano-sized magnetite crystals (< 100 nm) are highly regulated and bacterial species dependent. However, the control mechanisms of magnetite crystal morphology remain largely unknown. The group of proteins, called Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubooctahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria.
The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. IMPORTANCEMagnetotactic bacteria synthesize magnetite (Fe 3 O 4 ) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial regulation mechanism within the linear structure of magnetosomes. This discovery provides evidence of a highly regulated protein localization mechanism for this bacterial organelle development. P rotein localization at appropriate positions within a cell is an essential mechanism for the effective performance of the diverse biological reactions that occur within the restricted intracellular area in both eukaryotes and prokaryotes. In various prokaryotes, intracellular compartments can be created to provide the domains required for highly specialized reactions. Whereas some of these compartments are completely proteinaceous (e.g., carboxysomes, metabolosomes, and ferritin) (1-3), others contain molecular components similar to those in cell membranes, including lipids and proteins (e.g., nucleoids, polyhydroxybutyrate, and spores) (4, 5). Such compartmentalized organelles are recognized to be formed within bacteria through multiple processes involving the spatial regulation of protein localization, but the details of this regulatory m...
BackgroundThe field of structural dynamics of cytoskeletons in living cells is gathering wide interest, since better understanding of cytoskeleton intracellular organization will provide us with not only insights into basic cell biology but may also enable development of new strategies in regenerative medicine and cancer therapy, fields in which cytoskeleton-dependent dynamics play a pivotal role. The nanoneedle technology is a powerful tool allowing for intracellular investigations, as it can be directly inserted into live cells by penetrating through the plasma membrane causing minimal damage to cells, under the precise manipulation using atomic force microscope. Modifications of the nanoneedles using antibodies have allowed for accurate mechanical detection of various cytoskeletal components, including actin, microtubules and intermediate filaments. However, successful penetration of the nanoneedle through the plasma membrane has been shown to vary greatly between different cell types and conditions. In an effort to overcome this problem and improve the success rate of nanoneedle insertion into the live cells, we have focused here on the fluidity of the membrane lipid bilayer, which may hinder nanoneedle penetration into the cytosolic environment.ResultsWe aimed to reduce apparent fluidity of the membrane by either increasing the approach velocity or reducing experimental temperatures. Although changes in approach velocity did not have much effect, lowering the temperature was found to greatly improve the detection of unbinding forces, suggesting that alteration in the plasma membrane fluidity led to increase in nanoneedle penetration.ConclusionsOperation at a lower temperature of 4 °C greatly improved the success rate of nanoneedle insertion to live cells at an optimized approach velocity, while it did not affect the binding of antibodies immobilized on the nanoneedle to vimentins for mechanical detection. As these experimental parameters can be applied to various cell types, these results may improve the versatility of the nanoneedle technology to other cell lines and platforms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12951-016-0226-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.