Recently established Harris hawks optimization (HHO) has natural behavior for finding an optimum solution in global search space without getting trapped in previous convergence. However, the exploitation phase of the current Harris hawks optimizer algorithm is poor. In the present research, an improved version of the HHO algorithm, which combines Harris hawks optimizer with Canis lupus inspire grey wolf optimizer (GWO) and named as hHHO-GWO algorithm, has been proposed to find the solution of various optimization problems such as nonlinear, nonconvex, and highly constrained engineering design problem. In the proposed research, the phase of exploration and exploitation of the existing HHO algorithm has been further improved using GWO algorithm and its performance has been tested for various benchmarks problems including CEC2005 (unimodal, multimodal, and fixed dimensions functions), multimodal functions with variable dimensions, and CEC-BC-2017 test functions. Further, the developed hybrid optimizer has been tested for 11 different engineering design and optimization problems and experimental results of hHHO-GWO have been compared with other optimizer.
Conventional unit commitment problem (UCP) consists of thermal generating units and its participation schedule, which is a stimulating and significant responsibility of assigning produced electricity among the committed generating units matter to frequent limitations over a scheduled period view to achieve the least price of power generation. However, modern power system consists of various integrated power generating units including nuclear, thermal, hydro, solar and wind. The scheduling of these generating units in optimal condition is a tedious task and involves lot of uncertainty constraints due to time carrying weather conditions. This difficulties come to be too difficult by growing the scope of electrical power sector day by day, so that UCP has connection with problem in the field of optimization, it has both continuous and binary variables which is the furthermost exciting problem that needs to be solved. In the proposed research, a newly created optimizer, i.e., Harris Hawks optimizer (HHO), has been hybridized with sine–cosine algorithm (SCA) using memetic algorithm approach and named as meliorated Harris Hawks optimizer and it is applied to solve the photovoltaic constrained UCP of electric power system. In this research paper, sine–cosine Algorithm is used for provision of power generation (generating units which contribute in electric power generation for upload) and economic load dispatch (ELD) is completed by Harris Hawks optimizer. The feasibility and efficacy of operation of the hybrid algorithm are verified for small, medium power systems and large system considering renewable energy sources in summer and winter, and the percentage of cost saving for power generation is found. The results for 4 generating units, 5 generating units, 6 generating units, 7 generating units, 10 generating units, 19 generating units, 20 generating units, 40 generating units and 60 generating units are evaluated. The 10 generating units are evaluated with 5% and 10% spinning reserve. The efficacy of the offered optimizer has been verified for several standard benchmark problem including unit commitment problem, and it has been observed that the suggested optimizer is too effective to solve continuous, discrete and nonlinear optimization problems.
Daily load demand for industrial, residential and commercial sectors are changing day by day. Also, inclusion of e-mobility has totally effected the operations of realistic power sector. Hence, to meet this time varying load demand with minimum production cost is very challenging. The proposed research work focuses on the mathematical formulation of profit based unit commitment problem of realistic power system considering the impact of battery electric vehicles, hybrid electric vehicles and plug in electric vehicles and its solution using Intensify Harris Hawks Optimizer (IHHO). The coordination of plants with each other is named as Unit commitment of plants in which the most economical patterns of the generating station is taken so as to gain low production cost with higher reliability. But with the increase in industrialization has affected the environment badly so to maintain the balance between the generation and environment a new thinking of generating low cost power with high reliability by causing less harm to environment i.e. less emission of flue gases is adopted by considering renewable energy sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.