Mutations in the Notch pathway ligand Jagged1 (JAG1) cause Alagille syndrome (AGS), as well as cardiac defects in seemingly non-syndromic, individuals. To estimate the frequency of JAG1 mutations in cases with right-sided cardiac defects not otherwise diagnosed with AGS, we screened 94 cases with tetralogy of Fallot (TOF) and 50 with pulmonic stenosis/peripheral pulmonary stenosis (PS/PPS) or pulmonary valve atresia with intact ventricular septum (PA) for mutations. Sequence changes were identified in three TOF and three PS/PPS/PA patients,that were not present in 100 controls. We identified one frameshift and two missense mutations in the TOF cases, and one frameshift and two missense mutations in cases with PS/PPS/PA. The four missense mutations were assayed for their effect on protein localization, post-translational modification and ability to activate Notch signaling. The missense mutants displayed heterogeneous behavior in these assays, some with complete haploinsufficiency, suggesting that there are additional modifiers leading to organ specific features. We identified functionally significant mutations in 3% (2/94) of TOF patients and 4% (2/50) of PS/PPS/PA patients. Patients with right-sided cardiac defects should be carefully screened for features of AGS or a family history of cardiac defects that might suggest the presence of a JAG1 mutation.
Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in-situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4 + T cells,providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF co-stimulatory molecules in monosomy 1p36.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.