Background Self-focused augmented reality (AR) technologies are growing in popularity and present an opportunity to address health communication and behavior change challenges. Objective We aimed to examine the impact of self-focused AR and vicarious reinforcement on psychological predictors of behavior change during the COVID-19 pandemic. In addition, our study included measures of fear and message minimization to assess potential adverse reactions to the design interventions. Methods A between-subjects web-based experiment was conducted to compare the health perceptions of participants in self-focused AR and vicarious reinforcement design conditions to those in a control condition. Participants were randomly assigned to the control group or to an intervention condition (ie, self-focused AR, reinforcement, self-focus AR × reinforcement, and avatar). Results A total of 335 participants were included in the analysis. We found that participants who experienced self-focused AR and vicarious reinforcement scored higher in perceived threat severity (P=.03) and susceptibility (P=.01) when compared to the control. A significant indirect effect of self-focused AR and vicarious reinforcement on intention was found with perceived threat severity as a mediator (b=.06, 95% CI 0.02-0.12, SE .02). Self-focused AR and vicarious reinforcement did not result in higher levels of fear (P=.32) or message minimization (P=.42) when compared to the control. Conclusions Augmenting one’s reflection with vicarious reinforcement may be an effective strategy for health communication designers. While our study’s results did not show adverse effects in regard to fear and message minimization, utilization of self-focused AR as a health communication strategy should be done with care due to the possible adverse effects of heightened levels of fear.
Audio annotation is key to developing machine-listening systems; yet, effective ways to accurately and rapidly obtain crowdsourced audio annotations is understudied. In this work, we seek to quantify the reliability/redundancy trade-off in crowdsourced soundscape annotation, investigate how visualizations affect accuracy and efficiency, and characterize how performance varies as a function of audio characteristics. Using a controlled experiment, we varied sound visualizations and the complexity of soundscapes presented to human annotators. Results show that more complex audio scenes result in lower annotator agreement, and spectrogram visualizations are superior in producing higher quality annotations at lower cost of time and human labor. We also found recall is more affected than precision by soundscape complexity, and mistakes can be often attributed to certain sound event characteristics. These findings have implications not only for how we should design annotation tasks and interfaces for audio data, but also how we train and evaluate machine-listening systems.
This article discusses novel research methods used to examine how Augmented Reality (AR) can be utilized to present “omic” (i.e., genomes, microbiomes, pathogens, allergens) information to non-expert users. While existing research shows the potential of AR as a tool for personal health, methodological challenges pose a barrier to the ways in which AR research can be conducted. There is a growing need for new evaluation methods for AR systems, especially as remote testing becomes increasingly popular. In this article, we present two AR studies adapted for remote research environments in the context of personal health. The first study (n = 355) is a non-moderated remote study conducted using an AR web application to explore the effect of layering abstracted pathogens and mitigative behaviors on a user, on perceived risk perceptions, negative affect, and behavioral intentions. This study introduces methods that address participant precursor requirements, diversity of platforms for delivering the AR intervention, unsupervised setups, and verification of participation as instructed. The second study (n = 9) presents the design and moderated remote evaluation of a technology probe, a prototype of a novel AR tool that overlays simulated timely and actionable environmental omic data in participants' living environment, which helps users to contextualize and make sense of the data. Overall, the two studies contribute to the understanding of investigating AR as a tool for health behavior and interventions for remote, at-home, empirical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.