As there are to be known gender differences in the expression profiles of rat hepatic CYP2C, we examined the pharmacokinetic behavior of tolbutamide (TB), a typical probe for CYP2C, and hepatic enzyme activities for metabolizing TB in female rats to compare with male rats. On the pharmacokinetic analysis of TB after intravenous administration to female rats, the elimination rate constant at the terminal phase (k ), total clearance (CL ) and the apparent volume of distribution at steady-state (Vd ) were significantly lower than in male rats. The binding rates of TB to serum protein were similar in male and female rats, indicating that the change in unbound TB concentration in serum is not associated with the difference in the pharmacokinetic disposition of TB. On metabolic examination using hepatic microsomes, the maximum reaction velocity (V ) of the metabolic conversion from TB to 4-hydroxytolbutamide (4-OH-TB) in female rats was lower than that in male rats, although there was no significant difference in the Michaelis constant (K ) between genders. Consistent with this, the V -to-K ratio (V /K ) was significantly lower in female rats than in male rats. Therefore, the low in vitro CYP2C-dependent activity for hepatic TB removal in female rats provided a clear explanation for the lower in vivo elimination clearance of TB. Our findings strongly suggest that there is a gender difference in the metabolic capacity to eliminate drugs that serve as substrates of hepatic CYP2C enzymes in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.