We performed here a comprehensive analysis of WES data as a tool for identifying large genomic deletions in patients with IRDs. Our analysis indicates that large deletions are relatively frequent (about 10% of our WES cohort) and should be screened when analysing WES data.
We report here novel homozygous mutations in various genes causing USH, extending the spectrum of causative mutations. We also prove combined sequencing techniques as useful tools to identify novel disease-causing mutations. To the best of our knowledge, this is the largest report of a genetic analysis of Israeli and Palestinian families (n = 74) with different USH subtypes.
Background: NGLY1 is an enigmatic enzyme with multiple functions across a wide range of species. In humans, pathogenic genetic variants in NGLY1 are linked to a variable phenotype of global neurological dysfunction, abnormal tear production, and liver disease presenting the rare autosomal recessive disorder N-glycanase deficiency. We have ascertained four NGLY1 deficiency patients who were found to carry a homozygous nonsense variant (c.1294G > T, p.Glu432*) in NGLY1.Methods: We created an ngly1 deficiency zebrafish model and studied the nervous and musculoskeletal (MSK) systems to further characterize the phenotypes and pathophysiology of the disease.Results: Nervous system morphology analysis has shown significant loss of axon fibers in the peripheral nervous system. In addition, we found muscle structure abnormality of the mutant fish. Locomotion behavior analysis has shown hypersensitivity of the larval ngly1(−/−) fish during stress conditions.Conclusion: This first reported NGLY1 deficiency zebrafish model might add to our understanding of NGLY1 role in the development of the nervous and MSK systems. Moreover, it might elucidate the natural history of the disease and be used as a platform for the development of novel therapies.
Purpose
Usher syndrome (USH) is the most common syndromic inherited retinal disease, causing retinitis pigmentosa and sensorineural hearing loss. We reported previously that a nonsense mutation in the centrosome-associated protein
CEP250
gene (encoding C-Nap1) causes atypical USH in patients of Iranian Jewish origin. To better characterize
CEP250
, we aimed to generate and study a knockout (KO) mouse model for
Cep250
.
Methods
Mice heterozygous for a “knockout-first”
Cep250
construct were generated and bred with Cre recombinase mice to generate the null allele and produce homozygous
Cep250
KO mice. Retinal function was evaluated by full-field electroretinography (ffERG) at variable ages, and retinal structure changes were examined using histological analysis. Hearing thresholds were detected using auditory brainstem response (ABR) at the age of 20 months.
Results
The
Cep250
KO mouse model was generated by activating a construct harboring a deletion of exons 6 and 7. At 6 months, the ffERG was normal, but it decreased gradually with age. For both photopic and scotopic ffERG responses, very low amplitudes were evident at 20 months. Histological analysis confirmed late-onset retinal degeneration. ABR tests illustrated that hearing threshold significantly increased at the age of 20 months.
Conclusions
Although most USH animal models have normal retinal function and structure, the
Cep250
KO mouse model shows both retinal degeneration and hearing loss with a relatively late age of onset. This model may shed more light on
CEP250
-associated retinal and hearing deficits and represents an efficient platform for the development of treatment modalities for USH.
Translational Relevance
Our study demonstrates better understanding of
Cep250
-associated retinal and hearing disease in a mouse model and may help in developing more efficient gene therapy modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.