Mathematical models have been highly successful at reproducing the complex spatiotemporal phenomena seen in many biological systems. However, the ability to numerically simulate such phenomena currently far outstrips detailed mathematical understanding. This paper reviews the theory of absolute and convective instability, which has the potential to redress this inbalance in some cases. In spatiotemporal systems, unstable steady states subdivide into two categories. Those that are absolutely unstable are not relevant in applications except as generators of spatial or spatiotemporal patterns, but convectively unstable steady states can occur as persistent features of solutions. The authors explain the concepts of absolute and convective instability, and also the related concepts of remnant and transient instability.They give examples of their use in explaining qualitative transitions in solution behaviour. They then describe how to distinguish different types of instability, focussing on the relatively new approach of the absolute spectrum. They also discuss the use of the theory for making quantitative predictions on how spatiotemporal solutions change with model parameters. The discussion is illustrated throughout by numerical simulations of a model for river-based predator-prey systems.
Banded vegetation is a characteristic feature of semi-arid environments. It occurs on gentle slopes, with alternating stripes of vegetation and bare ground running parallel to the contours. A number of mathematical models have been proposed to investigate the mechanisms underlying these patterns, and how they might be affected by changes in environmental conditions. One of the most widely used models is due to Rietkerk and co-workers, and is based on a water redistribution hypothesis, with the key feedback being that the rate of rainwater infiltration into the soil is an increasing function of plant biomass. Here, for the first time, we present a detailed study of the existence and stability of pattern solutions of the Rietkerk model on slopes, using the software package WAVETRAIN (www. ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the rainfall-migration speed parameter plane in which patterns exist, and the sub-region in which these patterns are stable as solutions of the model partial differential equations. We then perform a detailed simulation-based study of the way in which patterns evolve when the rainfall parameter is slowly varied. This reveals complex behaviour, with sudden jumps in pattern wavelength, and hysteresis; we show that these jumps occur when the contours of constant pattern wavelength leave the parameter region giving stable patterns. Finally, we extend our results to the case in which a diffusion term for surface water is added to the model equations. The parameter regions for pattern existence and stability are relatively insensitive to small or moderate levels of surface water diffusion, but larger diffusion coefficients significantly change the subdivision into stable and unstable patterns.
Many ecological systems exhibit multi-year cycles. In such systems, invasions have a complicated spatiotemporal structure. In particular, it is common for unstable steady states to exist as long-term transients behind the invasion front, a phenomenon known as dynamical stabilisation. We combine absolute stability theory and computation to predict how the width of the stabilised region depends on parameter values. We develop our calculations in the context of a model for a cyclic predator-prey system, in which the invasion front and spatiotemporal oscillations of predators and prey are separated by a region in which the coexistence steady state is dynamically stabilised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.