We study duality twisted reductions of the Double Field Theory (DFT) of the RR sector of massless Type II theory, with twists belonging to the duality group Spin + (10, 10). We determine the action and the gauge algebra of the resulting theory and determine the conditions for consistency. In doing this, we work with the DFT action constructed by Hohm, Kwak and Zwiebach, which we rewrite in terms of the Mukai pairing: a natural bilinear form on the space of spinors, which is manifestly Spin(n, n) invariant. If the duality twist is introduced via the Spin + (10, 10) element S in the RR sector, then the NS-NS sector should also be deformed via the duality twist U = ρ(S), where ρ is the double covering homomorphism between P in(n, n) and O(n, n). We show that the set of conditions required for the consistency of the reduction of the NS-NS sector are also crucial for the consistency of the reduction of the RR sector, owing to the fact that the Lie algebras of Spin(n, n) and SO(n, n) are isomorphic. In addition, requirement of gauge invariance imposes an extra constraint on the fluxes that determine the deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.