Triosephosphate isomerase (TIM), from the hyperthemophilic bacterium Thermotoga maritima, has been shown to be covalently linked to phosphoglycerate kinase (PGK) forming a bifunctional fusion protein with TIM as the C-terminal portion of the subunits of the tetrameric protein (Schurig et al., EMBO J 14"-45 1, 1995). To study the effect of the anomalous state of association on the structure, stability, and function of Thermotogu TIM, the isolated enzyme was cloned and expressed in Escherichia coli, and compared with its wild-type structure in the PGK-TIM fusion protein.After introducing a start codon at the beginning of the tpi open reading frame, the gene was expressed in E.c.BL21(DE3)/ pNBTIM. The nucleotide sequence was confirmed and the protein purified as a functional dimer of 56.5 kDa molecular mass. Spectral analysis, using absorption, fluorescence emission, near-and far-UV circular dichroism spectroscopy were used to compare the separated Thennotoga enzyme with its homologs from mesophiles. The catalytic properties of the enzyme at -80 O C are similar to those of its mesophilic counterparts at their respective physiological temperatures, in accordance with the idea that under in vivo conditions enzymes occupy corresponding states. As taken from chaotropic and thermal denaturation transitions, the separated enzyme exhibits high intrinsic stability, with a half-concentration of guanidinium-chloride at 3.8 M, and a denaturation half-time at 80 OC of 2 h. Comparing the properties of the TIM portion of the PGK-TIM fusion protein with those of the isolated recombinant TIM, it is found that the fusion of the two enzymes not only enhances the intrinsic stability of TIM but also its catalytic efficiency.
Zinner syndrome (ZS) is a rare congenital malformation associated with seminal vesicle cysts, ejaculatory duct obstruction, and ipsilateral renal agenesis. The main treatment focus so far has been on symptomatic patients. Therefore, surgery has been reserved for these patients, and surgical treatment is mainly aimed at pain relief. ZS seems to be frequently associated with infertility, but diagnosing is challenging, particularly during adolescence. This literature review of ZS and infertility is based on the medical report of one adolescent patient.
Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.
Congenital lower urinary tract obstructions (LUTO) are most often caused by posterior urethral valves (PUV), a male limited anatomical obstruction of the urethra affecting 1 in 4,000 male live births. Little is known about the genetic background of PUV. Here, we report the largest genome-wide association study (GWAS) for PUV in 4 cohorts of patients and controls. The final meta-analysis included 756 patients and 4,823 ethnicity matched controls and comprised 5,754,208 variants that were genotyped or imputed and passed quality control in all 4 cohorts. No genome-wide significant locus was identified, but 33 variants showed suggestive significance (P < 1 × 10−5). When considering only loci with multiple variants residing within < 10 kB of each other showing suggestive significance and with the same effect direction in all 4 cohorts, 3 loci comprising a total of 9 variants remained. These loci resided on chromosomes 13, 16, and 20. The present GWAS and meta-analysis is the largest genetic study on PUV performed to date. The fact that no genome-wide significant locus was identified, can be explained by lack of power or may indicate that common variants do not play a major role in the etiology of PUV. Nevertheless, future studies are warranted to replicate and validate the 3 loci that yielded suggestive associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.