In the present work, we define harmonic complex balancing numbers by considering well-known balancing numbers and inspiring harmonic numbers. Mainly, we investigate some of their basic characteristic properties such as the Binet formula and Cassini identity, etc. In addition, one type of symmetric matrix family whose entries are harmonic complex balancing numbers is constructed. Additionally, some linear algebraic properties are obtained. Furthermore, some inequalities are stated by exploiting the well-known inequalities between various matrix norms. Finally, we illustrate the results with some numerical examples.
At this paper, we describe Gaussian Oresme numbers taking into account the Oresme numbers. Furthermore, we investigate their some basic characteristic properties such as Binet formula and Cassini identity, etc. Moreover, we define quaternions with Gaussian Oresme coefficients and obtain their some spectacular properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.