Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Eukaryotic translation initiates upon recruitment of the EIF2‐GTP·Met‐tRNAi ternary complex (TC) to the ribosomes. EIF2 (α, β, γ subunits) is a GTPase. The GDP to GTP exchange within EIF2 is facilitated by the guanine nucleotide exchange factor EIF2B (α‐ε subunits). During stress‐induced conditions, phosphorylation of the α‐subunit of EIF2 turns EIF2 into an inhibitor of EIF2B. In turn, inhibition of EIF2B decreases TC formation and triggers the internal stress response (ISR), which determines the cell fate. Deregulated ISR has been linked to neurodegenerative disorders and cancer, positioning EIF2B as a promising therapeutic target. Hence, a better understanding of the mechanisms/factors that regulate EIF2B activity is required. Here, combining transcript and protein level analyses, we describe an intronically polyadenylated (IPA) transcript of EIF2B's γ‐subunit. We show that the IPA mRNA isoform is translated into a C‐terminus truncated protein. Using structural modeling, we predict that the truncated EIF2Bγ protein has unfavorable interactions with EIF2γ, leading to a potential decrease in the stability of the nonproductive EIF2:EIF2B complex. While we discovered and confirmed the IPA mRNA isoform in breast cancer cells, the expression of this isoform is not cancer‐specific and is widely present in normal tissues. Overall, our data show that a truncated EIF2Bγ protein co‐exists with the canonical protein and is an additional player to regulate the equilibrium between productive and nonproductive states of the EIF2:EIF2B complex. These results may have implications in stress‐induced translation control in normal and disease states. Our combinatorial approach demonstrates the need to study noncanonical mRNA and protein isoforms to understand protein interactions and intricate molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.