The proinflammatory cysteine protease caspase-1 is autocatalytically activated upon cytosolic sensing of a variety of pathogen-associated molecular patterns by Nod-like receptors. Active caspase-1 processes pro–IL-1β and pro–IL-18 to generate the bioactive cytokines and to initiate pathogen-specific immune responses. Little information is available on caspase-1 and inflammasome activation during infection with the gastric bacterial pathogen Helicobacter pylori. In this study, we addressed a possible role for caspase-1 and its cytokine substrates in the spontaneous and vaccine-induced control of Helicobacter infection, as well as the development of gastritis and gastric cancer precursor lesions, using a variety of experimental infection, vaccine-induced protection, and gastric disease models. We show that caspase-1 is activated and IL-1β and IL-18 are processed in vitro and in vivo as a consequence of Helicobacter infection. Caspase-1 activation and IL-1 signaling are absolutely required for the efficient control of Helicobacter infection in vaccinated mice. IL-1R−/− mice fail to develop protective immunity but are protected against Helicobacter-associated gastritis and gastric preneoplasia as a result of their inability to generate Helicobacter-specific Th1 and Th17 responses. In contrast, IL-18 is dispensable for vaccine-induced protective immunity but essential for preventing excessive T cell-driven immunopathology. IL-18−/− animals develop strongly accelerated pathology that is accompanied by unrestricted Th17 responses. In conclusion, we show in this study that the processing and release of a regulatory caspase-1 substrate, IL-18, counteracts the proinflammatory activities of another caspase-1 substrate, IL-1β, thereby balancing control of the infection with the prevention of excessive gastric immunopathology.
B cells regulate autoimmune pathologies and chronic inflammatory conditions such as autoimmune encephalomyelitis and inflammatory bowel disease. The potential counterregulatory role of B cells in balancing pathogen-specific immune responses and the associated immunopathology is less well understood owing to the lack of appropriate persistent infection models. In this paper, we show that B cells have the ability to negatively regulate adaptive immune responses to bacterial pathogens. Using mouse models of infection with Helicobacter felis, a close relative of the human gastrointestinal pathogen H. pylori, we found that B cells activated by Helicobacter TLR-2 ligands induce IL-10–producing CD4+CD25+ T regulatory-1 (Tr-1)–like cells in vitro and in vivo. Tr-1 conversion depends on TCR signaling and a direct T-/B-interaction through CD40/CD40L and CD80/CD28. B cell-induced Tr-1 cells acquire suppressive activity in vitro and suppress excessive gastric Helicobacter-associated immunopathology in vivo. Adoptive cotransfer of MyD88-proficient B cells and Tr-1 cells restores a normal gastric mucosal architecture in MyD88−/− and IL-10−/− mice in a manner that depends on T cellular, but not B cellular, IL-10 production. Our findings describe a novel mechanism of B cell-dependent Tr-1 cell generation and function in a clinically relevant disease model. In conclusion, we demonstrate that the B cell/Tr-1 cell axis is essential for balancing the control of Helicobacter infection with the prevention of excessive Th1-driven gastric immunopathology, promoting gastric mucosal homeostasis on the one hand and facilitating Helicobacter persistence on the other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.