Thirty chestnut and twenty‐six of floral honeys were collected from different regions of Turkey. The amounts of phenolic compounds in honeys were determined by high performance liquid chromatography‐diode array detection. The antioxidant capacities were determined by ABTS and CHROMAC methods. The total phenolic content of honeys were determined by spectrophotometric method using the Folin‐Ciocalteu reagent. Caffeic, protocatechuic, and p‐hydroxybenzoic acids are the major phenolic compounds with the contents of 44.52, 17.48, and 21.50 mg/kg, respectively in chestnut honeys. Chestnut honeys exhibited the higher antioxidant and better antimicrobial activities, and than the floral honeys. Floral honeys contain similar amounts of propolis flavonoids such as pinocembrin, chrysin, and galangin. The results show that these flavonoids can be used as chemical markers in honey samples.
Practical applications
Honey is an important natural product that contains major compounds including glucose and fructose and minor components such as amino acids, organic acids, enzymes, vitamins, proteins, phytochemical substances mainly flavonoids and other phenolic compounds. Plants are important sources of natural compounds that contain polyphenolic derivatives such as flavonoids and phenolic acids. These bioactive compounds can be transferred from plants to honey. Polyphenolic compounds were recognized as the major components responsible for health‐promoting properties of honey. This article evaluates the antimicrobial and antioxidant activities and phenolic compounds of chestnut and floral honeys. The chemical content and biological properties of honey have been studied extensively in many but there are a few studies in our knowledge about the determination of phenolic compounds in chestnut honey.
An aeropalynological study was performed in Bodrum, the famous tourism center in southwestern Turkey with a Hirst-type volumetric 7-day pollen and spore trap for 2 years (2007-2008). In Bodrum, 25,099 pollen grains as a mean value belonging to 41 taxa were recorded annually during the study period, and pollen grains from woody plant taxa had the largest atmospheric contribution of 86.99% and 24 taxa. However, 17 herbaceous plant taxa constituted 12.82% of the annual total pollen count, and 0.19% were unidentified. An average annual pollen index of 22.66% was recorded in March, despite differences from year to year. The highest pollen variability of 34 taxa was recorded in April and May. Predominant pollen types belonged to Cupressaceae/Taxaceae (42.73%), Quercus (15.95%), Pinus (9.78%), Olea europaea (9.04%), Poaceae (5.50%), Betula (1.82%), Pistacia (1.74%), Morus (1.72%), Urticaceae (1.46%), and Plantago (1.28%) and generated 91.03 of the annual total. In total, 32.59% of the mean annual total pollen index was recorded in the morning, and less pollen was recorded in the evening (18.71%). Maximum pollen concentration was recorded between 11:00 and 12:00 a.m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.