Bio-CaCO3 nanoparticles have several applications and have attracted significant attention in current research. N,N-dimethylformamide (DMF) has been proven to be an effective non-volatile solvent for synthesizing bio-CaCO3 nanomaterials from eggshell. However, the optimum ratio of eggshell and DMF need to be specified to achieve maximum nano-CaCO3 production for large-scale purposes. Thus, this work investigated the effect of eggshell/DMF mixing ratios on the production of CaCO3 nanoparticles from the chicken eggshell. The nano-CaCO3 were synthesized via dry milling and then sonication at a frequency of 40 kHz for 6 h in the presence of DMF. The eggshell mass was varied from 0.5 to 20 g per 100 mL of DMF. The synthesized CaCO3 materials were characterized using SEM, TEM, EDX, XRD, and BET surface analysis. The eggshell/DMF ratio was optimized to maximize the production of CaCO3 nanoparticles, and its effect on the size, crystallinity, surface area, and porosity of the CaCO3 particles were discussed. Increasing eggshell/DMF ratio decreased the sonication efficiency with increasing crystallite and particle size. The specific surface area of the synthesized CaCO3 particles decreased with increasing eggshell/DMF ratio. 1 g/100 mL was the optimum or highest ratio to obtain 100% nano-CaCO3. At 1 g/100mL ratio, the bio-CaCO3 contained a crystallite size of 23.08 nm, particle size between 5 and 30 nm and surface area of 47.44 m2 g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.