BackgroundMonozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity.ResultsHere, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially greater than can be explained by their genetic identity. This “epigenetic supersimilarity” apparently results from locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation at these loci years before diagnosis is associated with risk of developing several types of cancer.ConclusionsThese results establish a link between early embryonic epigenetic development and adult disease. More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the phenotypic similarity of monozygotic twins.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1374-0) contains supplementary material, which is available to authorized users.
Background - There is considerable interest in whether genetic data can be used to improve standard cardiovascular disease risk calculators, as the latter are routinely used in clinical practice to manage preventative treatment. Methods - Using the UK Biobank (UKB) resource, we developed our own polygenic risk score (PRS) for coronary artery disease (CAD). We used an additional 60,000 UKB individuals to develop an integrated risk tool (IRT) that combined our PRS with established risk tools (either the American Heart Association/American College of Cardiology's Pooled Cohort Equations (PCE) or UK's QRISK3), and we tested our IRT in an additional, independent, set of 186,451 UKB individuals. Results - The novel CAD PRS shows superior predictive power for CAD events, compared to other published PRSs and is largely uncorrelated with PCE and QRISK3. When combined with PCE into an integrated risk tool, it has superior predictive accuracy. Overall, 10.4% of incident CAD cases were misclassified as low risk by PCE and correctly classified as high risk by the IRT, compared to 4.4% misclassified by the IRT and correctly classified by PCE. The overall net reclassification improvement for the IRT was 5.9% (95% CI 4.7-7.0). When individuals were stratified into age-by-sex subgroups the improvement was larger for all subgroups (range 8.3%-15.4%), with best performance in 40-54yo men (15.4%, 95% CI 11.6-19.3). Comparable results were found using a different risk tool (QRISK3), and also a broader definition of cardiovascular disease. Use of the IRT is estimated to avoid up to 12,000 deaths in the USA over a 5-year period. Conclusions - An integrated risk tool that includes polygenic risk outperforms current risk stratification tools and offers greater opportunity for early interventions. Given the plummeting costs of genetic tests, future iterations of CAD risk tools would be enhanced with the addition of a person's polygenic risk.
Epigenome‐wide association studies (EWAS) are designed to characterise population‐level epigenetic differences across the genome and link them to disease. Most commonly, they assess DNA‐methylation status at cytosine‐guanine dinucleotide (CpG) sites, using platforms such as the Illumina 450k array that profile a subset of CpGs genome wide. An important challenge in the context of EWAS is determining a significance threshold for declaring a CpG site as differentially methylated, taking multiple testing into account. We used a permutation method to estimate a significance threshold specifically for the 450k array and a simulation extrapolation approach to estimate a genome‐wide threshold. These methods were applied to five different EWAS datasets derived from a variety of populations and tissue types. We obtained an estimate of α=2.4×10−7 for the 450k array, and a genome‐wide estimate of α=3.6×10−8. We further demonstrate the importance of these results by showing that previously recommended sample sizes for EWAS should be adjusted upwards, requiring samples between ∼10% and ∼20% larger in order to maintain type‐1 errors at the desired level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.