In this study, it was investigated the treatability of real wastewater from textile industry by electrochemical treatment methods (electrocoagulation and electrooxidation). Effect of important operating parameters such as, electrode type and combination (Al-Al, Fe-Fe, Al-Fe, Fe-Al, Pt-Fe), pH, reaction time and potential were investigated on removal efficiency of color and chemical oxygen demand (COD). The initial color and COD concentrations of the wastewater were 395 Pt-Co and 1040 mg/L, respectively. At the end of the electrocoagulation experiments, concentrations of color and COD were decreased to 28 Pt-Co and 115 mg/L, respectively. Results showed that at pH 3 and 6 V potential, up to 93% color and 89% COD removal efficiencies were obtained in the reactor consisting of Fe-Fe electrodes. COD and color were removed at the rate of 88% and 92%, respectively in the study done with Al-Al couple at 10 V in natural pH (6.96). COD removal was achieved in the ratio of 93% at 6V as a result of the electrooxidation study with a couple of Pt-Fe electrodes. The study showed that the removal process was promising and it was reached to the discharge limit values for the color and COD with each electrode couple specified in the regulation. When considering the removal efficiencies, electrocoagulation process is the best treatment method is for this study. In terms of energy consumption, the electrooxidation process is more economical to effectively remove COD
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.