Exoskeletons are powered robotic devices designed to be worn by humans to provide physical assistance or power augmentation. In this work, a control system for a powered exoskeleton is designed. This exoskeleton is aimed at aiding in the rehabilitation of Spinal Bifidas. Spinal Bifida is the most common disability in childhood after Cerebral Palsy, it is a defective development of the spinal cord during conception. Two phases for this work are presented: system identification and control using ANFIS. While it is difficult to attain an accurate dynamical model of complex system, this work employed ANFIS to help control and stabilize the system. Gait trajectories were obtained by modeling the system as a linear inverted pendulum, a simulation was performed with a traditional controller. Afterwards, trajectory data was obtained and used to train and test ANFIS to create the model and controller. One, two and three inputs were investigated to train the ANFIS. Results showed that the one-input model visibly failed to follow the trajectory. The average RMSE for the two-input model was 0.096, and for the three-inputs, the RMSE on average was higher; 0.19, making it worse, however the knee model contrastingly showed improvement, as the RMSE was lower by 2% for the knee specifically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.