In this paper, we present a generalization of the commonly used growth models. We introduce Koya-Goshu biological growth model, as a more general solution of the rate-state ordinary differential equation. It is shown that the commonly used growth models such as Brody, Von Bertalanffy, Richards, Weibull, Monomolecular, Mitscherlich, Gompertz, Logistic, and generalized Logistic functions are its special cases. We have constructed growth and relative growth functions as solutions of the rate-state equation. The generalized growth function is the most flexible so that it can be useful in model selection problems. It is also capable of generating new useful models that have never been used so far. The function incorporates two parameters with one influencing growth pattern and the other influencing asymptotic behaviors. The relationships among these growth models are studies in details and provided in a flow chart.
In this paper, we derive inflection points for the commonly known growth curves, namely, generalized logistic, Richards, Von Bertalanffy, Brody, logistic, Gompertz, generalized Weibull, Weibull, Monomolecular and Mitscherlich functions. The functions often represent the mean part of non-linear regression models in Statistics. Inflection point of a growth curve is the point on the curve at which the rate of growth gets maximum value and it represents an important physical interpretation in the respective application area. Not only the model parameters but also the inflection point of a growth curve is of high statistical interests.
In this paper, some theoretical mathematical aspects of the known predator-prey problem are considered by relaxing the assumptions that interaction of a predation leads to little or no effect on growth of the prey population and the prey growth rate parameter is a positive valued function of time. The predator growth model is derived considering that the prey follows a known growth models viz., Logistic and Von Bertalanffy. The result shows that the predator's population growth models look to be new functions. For either models, the predator population size either converges to a finite positive limit or to 0 or diverges to +∞. It is shown algebraically and illustrated pictorially that there is a condition at which the predator-prey population models both converge to the same finite limit. Derivations and simulation studies are provided in the paper. Analysis of equilibrium points and stability is also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.