The gem-diol moieties of organic compounds are rarely isolated or even studied in the solid state. Here, liquid- and solid-state NMR, together with single-crystal X-ray diffraction studies, were used to show different strategies to favor the gem-diol or carbonyl moieties and to isolate hemiacetal structures in formylpyridine and vitamin-B-related compounds. The change in position of the carbonyl group in pyridine compounds had a clear and direct effect on the hydration, which was enhanced by trifluoroacetic acid addition. Because of their biochemical importance, vitamin-B-related compounds were studied with emphasis on the elucidation of the gem-diol, cyclic hemiacetal or carbonyl structures that can be obtained in different experimental conditions. In particular, new racemic mixtures for the cyclic hemiacetal structure from pyridoxal are reported in trifluoroacetate and hydrochloride derivatives.
The stability of gem-diol forms in imidazolecarboxaldehyde isomers was studied by solid-state nuclear magnetic resonance (ss-NMR) combined with single-crystal X-ray diffraction studies. These methodologies also allowed determining the factors governing the occurrence of such rare functionalization in carbonyl moieties. Results indicated that the position of the carbonyl group is the main factor that governs the generation of geminal diols, having a clear and direct effect on hydration, since, under the same experimental conditions, only 36% of 5-imidazolecarboxaldehydes and 5% of 4-imidazolecarboxaldehydes were hydrated, as compared to 2-imidazolecarboxaldehydes, with which a 100% hydration was achieved. Not only did trifluoroacetic acid favor the addition of water to the carbonyl group but also it allowed obtaining single crystals. Single crystals of the gem-diol and the hemiacetal forms 2-imidazolecarboxaldehyde and N-methyl-2-imidazolecarboxaldehyde, respectively, were isolated and studied through H ss-NMR. Mass spectrometry and solution-state NMR experiments were also performed to study the hydration process.
The complex chemical functionalization of the aldehyde group was elucidated in copper and cobalt complexes for 4- and 3-pyridinecarboxaldehyde ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.