The efficiency in the capabilities to store and release antioxidants depends on the film morphology and its manufacturing process, as well as on the type and methodology used to obtain the polyphenol extracts. Here, hydroalcoholic extracts of black tea polyphenols (BT) were obtained and dropped onto different polyvinyl alcohol (PVA) aqueous solutions (water or BT aqueous extract with and without citric acid, CA) to obtain three unusual PVA electrospun mats containing polyphenol nanoparticles within their nanofibers. It was shown that the mat obtained through the nanoparticles precipitated in BT aqueous extract PVA solution presented the highest total polyphenol content and antioxidant activity, and that the addition of CA as an esterifier or PVA crosslinker interfered with the polyphenols. The release kinetics in different food simulants (hydrophilic, lipophilic and acidic) were fitted using Fick’s diffusion law and Peppas’ and Weibull’s models, showing that polymer chain relaxation is the main mechanism in all food simulants except for the acidic, which presented an abrupt release by Fick’s diffusion mechanism of about 60% before being controlled. This research provides a strategy for the development of promising controlled-release materials for active food packaging, mainly for hydrophilic and acidic food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.