Immune responses generally decline with age. However, the dynamics of this process at the individual level have not been characterized, hindering quantification of an individual’s immune age. Here, we use multiple ‘omics’ technologies to capture population- and individual-level changes in the human immune system of 135 healthy adult individuals of different ages sampled longitudinally over a nine-year period. We observed high inter-individual variability in the rates of change of cellular frequencies that was dictated by their baseline values, allowing identification of steady-state levels toward which a cell subset converged and the ordered convergence of multiple cell subsets toward an older adult homeostasis. These data form a highdimensional trajectory of immune aging (IMM-AGE) that describes a person’s immune status better than chronological age. We show that the IMM-AGE score predicted all-cause mortality beyond well-established risk factors in the Framingham Heart Study, establishing its potential use in clinics for identification of patients at risk. Reporting Summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.
While many diseases of aging have been linked to the immunological system, immune metrics with which to identify the most at-risk individuals are lacking. We studied the blood immunome of 1001 individuals aged 8-96 and developed a deep learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multiple morbidities, immunosenescence, frailty and cardiovascular aging. We demonstrate that iAge is associated with exceptional longevity in a separate cohort of centenarians. The strongest contributor to this metric was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling, and decreased vascular function.Furthermore, aging endothelial cells in human and mice show loss of function, indicators of early cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related systemic chronic inflammation and derive a novel metric for age-related multimorbidity that can also be used for early detection of age-related clinical phenotypes.
Single-cell RNA sequencing and high-dimensional cytometry can be used to generate detailed trajectories of dynamic biological processes such as differentiation or development. Here we present cellAlign, a quantitative framework for comparing expression dynamics within and between single-cell trajectories. By applying cellAlign to mouse and human embryonic developmental trajectories, we systematically delineate differences in the temporal regulation of gene expression programs that would otherwise be masked.
SummarySkin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a surface protein on T cells, that has an inhibitory effect on the host immune reaction and prevents overreaction of the immune system. Because the functional single-nucleotide polymorphism (SNP) rs231775 of the CTLA-4 gene is associated with autoimmune diseases and because of the critical role of the immune reaction in sepsis, we intended to examine the effect of this polymorphism on survival in patients with sepsis. 644 septic adult Caucasian patients were prospectively enrolled in this study. Patients were followed up for 90 days. Mortality risk within this period was defined as primary outcome parameter. Kaplan-Meier survival analysis revealed a significantly lower 90-day mortality risk among GG homozygous patients (n = 101) than among A allele carriers (n = 543; 22% and 32%, respectively; p = 0.03565). Furthermore, the CTLA-4 rs231775 GG genotype remained a significant covariate for 90-day mortality risk after controlling for confounders in the multivariate Cox regression analysis (hazard ratio: 0.624; 95% CI: 0.399–0.975; p = 0.03858). In conclusion, our study provides the first evidence for CTLA-4 rs231775 as a prognostic variable for the survival of patients with sepsis and emphasizes the need for further research to reveal potential functional associations between CTLA-4 and the immune pathophysiology of sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.