Development of improved methods for the synthesis of copper nanoparticles is of high priority for the advancement of material science and technology. Herein, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route. The method is based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80°C). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements were taken to investigate the size, structure and composition of synthesized Cu nanocrystals, respectively. Average crystallite size of Cu nanocrystals calculated from the major diffraction peaks using the Scherrer formula is about 28.73 nm. It is expected that the outcomes of the study take us a step closer toward designing rational strategies for the synthesis of nascent Cu nanoparticles without inert gas protection.
Two mononuclear fluorophore-labeled copper(II) complexes [Cu(nip)(acac)](+)(2) and [Cu(nip)2](2+) (3), where fluorophore is 2-(naphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (nip) (1) and acac is acetylacetone, have been synthesized and characterized by various techniques. The ligand 1 and complex 2 are structurally characterized by single-crystal X-ray diffraction. The coordination geometries around the copper are square planar in solid as well as solution state as evidenced by electron paramagnetic resonance (EPR) spectroscopy. The density functional calculations carried out on 1-3 have shown that electron-rich regions in the highest occupied orbital are localized on the naphthalene and partly on the phenanthroline moiety. Both complexes 2 and 3 in dimethyl sulfoxide (DMSO) exhibit near square planar structure around the metal ion in their ground state. Time-dependent density functional theory (TD-DFT) calculations reveal that Cu(II) ion in complex 2 shows tetrahedral coordination around the metal while 3 retains its square planar geometry in the lowest excited state. The interaction of complexes with calf-thymus DNA (CT DNA) has been explored by using absorption, emission, thermal denaturation, and viscosity studies, and the intercalating mode of DNA binding has been proposed. The complexes cleave DNA oxidatively without any exogenous additives. The protein binding ability has been monitored by quenching of tryptophan emission in the presence of complexes using bovine serum albumin (BSA) as model protein. The compounds showed dynamic quenching behavior. Further, the anticancer activity of the complexes on MCF-7 (human breast cancer), HeLa (human cervical cancer), HL-60 (human promyelocytic leukemia), and MCF-12A (normal epithelial) cell lines has been studied. It has been observed that 3 exhibits higher cytotoxicity than 2, and the cells undergo apoptotic cell death.
Chitosan-derived N-doped carbon materials are attractive candidates for the preparation of catalysts with a wide range of applications. Chitosan is a nitrogen rich (∼7 wt %) renewable biomass resource derived from seafood waste. Nitrogen-containing functional groups (amine and acetamide) of chitosan make it a suitable precursor for the synthesis of N-doped carbon materials. This perspective provides an overview on various techniques for the preparation and characterization of chitosan-based N-doped carbon materials and their application in the field of electrocatalysis and photocatalysis. Additional doping with nitrogen imparts greater electrochemical stability and basic character to the material due to the ability of nitrogen atoms to accept electrons. Nevertheless, each type of C–N bonding configuration has unique potential for catalytic reactions attributed to different electronic structure and catalytically active sites. The ability to acquire desired N-bonding states during the process of doping will provide a better control over the material application. The promising performance of chitosan-based N-doped carbon materials in electrocatalytic and photocatalytic reactions is attributed to their improved electronic structure and charge transfer properties. Moreover, research trends toward the design of chitosan-based N-doped carbons materials with required features for electrocatalytic and photocatalytic applications have also been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.